首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water(ESTMW) in the North Pacific to two different single forcings: greenhouse gases(GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume.The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol.  相似文献   

2.
The El Nin o-Southern Oscillation (ENSO) is modulated by many factors; most previous studies have emphasized the roles of wind stress and heat flux in the tropical Pacific. Freshwater flux (FWF) is another environmental forcing to the ocean; its effect and the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (Q B ) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Q B variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nin a and enhancing warming during El Nin o, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.  相似文献   

3.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

4.
Components of interannual, intermonthly, and total monthly variability of lower troposphere temperature are calculated from a global coupled ocean-atmosphere general circulation model (GCM) (referred to as the coupled model), from the same atmospheric model coupled to a nondynamic mixedlayer ocean (referred to as the mixed-layer model), and from microwave sounding unit (MSU) satellite data. The coupled model produces most features of intermonthly and interannual variability compared to the MSU data, but with somewhat reduced amplitude in the extratropics and increased variability in the tropical western Pacific and tropical Atlantic. The relatively short 14-year period of record of the MSU data precludes definitive conclusions about variability in the observed system at longer time scales (e.g., decadal or longer). Different 14-year periods from the coupled model show variability on those longer time scales that were noted in Part 1 of this series. The relative contributions of intermonthly and interannual variability that make up the total monthly variability are similar between the coupled model and the MSU data, suggesting that similar mechanisms are at work in both the model and observed system. These include El Niño-Southern Oscillation (ENSO)-type interannual variability in the tropics, Madden-Julian Oscillation (MJO) type intermonthly variability in the tropics, and blocking-type intermonthly variability in the extratropics. Manifestations of all of these features have been noted in various versions of the model. Significant changes of variability noted in the coupled model with doubled carbon dioxide differ from those in our mixed-layer model and earlier studies with mixed-layer models. In particular, in our mixed-layer model intermonthly and interannual variability changes are similar with a mixture of regional increases and decreases, but with mainly decreases in the zonal mean from about 20°S to 60°N and near 60°S. In the coupled model, intermonthly and interannual changes of variability with doubled CO2 show mostly increases of tropical interannual variability and decreases of intermonthly variability near 60°N. These changes in the tropics are related to changes in ENSO, the south Asian monsoon, and other regional hydrological regimes, while the alterations near 60°N are likely associated with changes in blocking activity. These results point to the important contribution from ENSO seen in the coupled model and the MSU data that are not present in the mixed-layer model.  相似文献   

5.
A. P. Dimri 《Climate Dynamics》2014,42(7-8):1793-1805
During the winter season (Dec., Jan., and Feb.; DJF) the western Himalaya (WH) receives one-third of its annual precipitation due to Indian winter monsoon (IWM). The IWM is characterized by eastward-moving synoptic weather systems called western disturbances. Seasonal interannual precipitation variability is positively correlated with monthly interannual variabilities. However, it was found that the monthly interannual variabilities differ. The interannual variability for Jan. is negatively correlated with that for Dec. and Feb. Because the entire seasonal interannual variability is in phase with the El Niño Southern Oscillation, it is interesting to investigate such contrasting behavior. Composite analysis based on extreme wet and dry seasons indicates that Dec. and Feb. precipitation variabilities have a high positive (low negative) correlation with eastern (western) equatorial Pacific warming (cooling), whereas Jan. precipitation variability exhibits negligible correlations. Seasonal mid/upper tropospheric cooling over the Himalayas enhances anomalous cyclonic circulation, which along with suppressed convection over the western equatorial Pacific, shifts the 200-hPa subtropical westerly jet southward over the Himalayas. Due to the upper tropospheric anomalous cyclonic circulation, mass transfer favors anticyclone formation at the mid/lower troposphere, which is enhanced in Jan. due to a warmer mid troposphere and hence decreases precipitation compared with Dec. and Feb. Additionally, a weakening of meridional moisture flux transport from the equatorial Indian Ocean to WH is observed in Jan. Further analysis reveals that mid-tropospheric and surface temperatures over WH also play dominant roles, acting as local forcing where the preceding month’s surface temperature controls the succeeding month’s precipitation.  相似文献   

6.
Atmospheric water vapor content(WVC) is a critical factor for East Asian winter precipitation. This study investigates the dominant modes of interannual variability in WVC over East Asia during winter and their underlying mechanisms.Based on the empirical orthogonal function(EOF) method, the leading mode(EOF1, R~2 = 28.9%) of the interannual variability in the East Asian winter WVC exhibits a meridional dipole pattern characterized by opposite WVC anomalies over northeastern China and eastern China; the second mode(EOF2, R~2 = 24.3%) of the interannual variability in the East Asian winter WVC exhibits a monopole pattern characterized by consistent WVC anomalies over eastern China. EOF1 is mainly modulated by two anomalous zonal water vapor transport(WVT) branches over northeastern China and eastern China, which are associated with an anomalous atmospheric wave train over Eurasia affected by sea ice cover in the Kara Sea-Barents Sea(SIC-KSBS) area in the preceding October-November(ON). EOF2 is mainly modulated by an anomalous westerly WVT branch over eastern China, which is associated with a circumglobal atmospheric zonal wave train in the Northern Hemisphere. This circumglobal zonal wave train is modulated by concurrent central and eastern tropical Pacific sea surface temperature anomalies. The SIC-KSBS anomalies in ON and the concurrent SST anomalies over tropical Pacific may partially account for the interannual variability of EOF1 and EOF2 winter WVC, and thus may provide a theoretical basis for improving the prediction of winter climate over East Asia.  相似文献   

7.
The climatology and interannual variability of sea surface salinity(SSS) and freshwater flux(FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model(BNU-ESM).The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth(MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature(SST) in the equatorial Pacific is identified. As a response to El Ni ?no–Southern Oscillation(ENSO),the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Ni ?no, a positive FWF anomaly in the western-central Pacific(an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Ni ?no is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.  相似文献   

8.
The role of spring Wyrtki jets in modulating the equatorial Indian Ocean and the regional climate is an unexplored problem. The source of interannual variability in the spring Wyrtki jets is explored in this study. The relationship between intraseasonal and interannual variability from 1958 to 2008 and its relation with Indian Summer Monsoon is further addressed. Analysis reveals that the interannual variability in spring Wyrtki jets is controlled significantly by their intraseasonal variations. These are mostly defined by a single intraseasonal event of duration 20 days or more which either strengthens or weakens the seasonal mean jet depending on its phase. The strong spring jets are driven by such intraseasonal westerly wind bursts lasting for 20-days or more, whereas the weak jets are driven by weaker intraseasonal westerlies. During the years of strong jets, the conventional westward phase propagation of Wyrtki jets is absent and instead there is an eastward phase propagation indicating the possible role of Madden Julian Oscillation (MJO) in strengthening the spring Wyrtki jets. These strong intraseasonal westerly wind bursts with eastward phase propagation during strong years are observed mainly in late spring and have implications on June precipitation over the Indian and adjoining land mass. Anomalously strong eastward jets accumulate warm water in the eastern equatorial Indian Ocean (EIO), leading to anomalous positive upper ocean heat content and supporting more local convection in the east. This induces subsidence over the Indian landmass and alters monsoon rainfall by modulating monsoon Hadley circulation. In case of weak current years such warm anomalies are absent over the eastern EIO. Variations in the jet strength are found to have strong impact on sea level anomalies, heat content, salinity and sea surface temperature over the equatorial and north Indian Ocean making it a potentially important player in the north Indian Ocean climate variability.  相似文献   

9.
This study examines in detail the ‘atmospheric’ radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale ‘transient’ warming (from a 1% per annum compounded CO2 increase), and those operating under the model’s own unforced ‘natural’ variability. The time evolution of the transient (or ‘secular’) feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a ‘mixed layer’ ocean version of the same model forced by a doubling of CO2. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback—in contrast to the dominant negative low to mid-latitude response seen under secular climate change. Surface albedo feedback is, however, slightly stronger under interannual variability—partly due to regions of extremely weak, or even negative, feedback over Antarctic sea ice in the transient experiment. Both long and shortwave global cloud feedbacks are essentially zero on interannual timescales, with the shortwave term also being very weak under climate change, although cloud fraction and optical property components show correlation with global temperature both under interannual variability and transient climate change. The results of this modelling study, although for a single model only, suggest that the analogues provided by interannual variability may provide some useful pointers to some aspects of climate change feedback strength, particularly for water vapour and surface albedo, but that structural differences will need to be heeded in such an analysis.  相似文献   

10.
Estimating the processes that control the north equatorial sea surface temperature (SST)-front on the northern edge of the cold tongue in the tropical Atlantic is a key issue for understanding the dynamics of the oceanic equatorial Atlantic and the West African Monsoon. Diagnosis of the frontogenetic forcings on a realistic high-resolution simulation was used to identify the processes involved in the formation and evolution of the equatorial SST-front. The turbulent forcing associated with the mixed-layer turbulent heat flux was found to be systematically frontolytic while the dynamic forcing associated with currents was found to be frontogenetic for the equatorial SST-front. Nevertheless, the low-frequency component of the turbulent forcing was frontogenetic and initiated the SST-front which was then amplified and maintained by the leading dynamic forcing. This forcing was mainly driven by the meridional convergence of the northern South Equatorial Current (nSEC) and the Guinea Current, which points out the essential role played by the circulation in the equatorial SST-front evolution. The quasi-biweekly variability of the equatorial SST-front and its forcings were found to be more strongly coupled to the wind energy flux (WEF) than to the surface wind stress. In fact the WEF controlled the convergence/divergence of the nSEC and Guinea Current and thus the meridional component of the leading dynamic forcing. The WEF explains the equatorial SST-front development better than the wind does because it is a coupled ocean-atmosphere process.  相似文献   

11.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

12.
ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying salinity on the evolution of the El Nifio Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During E1 Nifio (La Nifia), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°-160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160~E- 170~W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a onedimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.  相似文献   

13.
Multi-year predictability in a coupled general circulation model   总被引:1,自引:0,他引:1  
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15–20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.  相似文献   

14.
Summary This study addresses the relationship between the Indian summer monsoon (ISM) and the coupled atmosphere/ocean system in the tropical Pacific on the interannual time scales. High positive correlations are found between ISM rainfall and both mixed layer sea water temperature (SWT) and sea surface temperature (SST) anomalies of the tropical western Pacific in the following winter. Negative correlations between ISM rainfall and SST in the central/eastern Pacific also appear to be most significant in the following winter. These parameters are correlated with each other mainly on a biennial time scale. Lag-correlations between the zonal wind and SST along the the equatorial Pacific show that the westerly (easterly) surface wind stress anomalies over the central/western Pacific are greatly responsible for the formation of negative (positive) SST/SWT anomalies in the western Pacific and positive (negative) SST/SWT anomalies in the central/eastern Pacific. Furthermore, it is evidenced that these lagcorrelations are physically based on the anomalies in the large-scale convection over the Asian monsoon region and the associated east-west circulation over the tropical Pacific, which first appear during the Indian summer monsoon season and evolve during the following autumn and winter. These results strongly suggest that the Asian summer monsoon may have an active, rather than a passive, role on the interannual variability, including the ENSO events, of the coupled atmosphere/ocean system over the tropical Pacific.With 9 Figures  相似文献   

15.
A dataset of hourly sea surface temperature (SST) from the period 1 January 1982 to 31 December 2012, and covering the global ocean at a resolution of 0.3 0.3, was created using a validated ocean mixed-layer model (MLSST). The model inputs were heat flux and surface wind speed obtained from the Coupled Forecast System Reanalysis dataset. Comparisons with in-situ data from the Tropical Atmosphere Ocean array and the National Data Buoy Center showed that the MLSST fitted very well with observations, with a mean bias of 0.07C, and a root-mean-square error (RMSE) and correlation coefficient of 0.37C and 0.98, respectively. Also, the MLSST fields successfully reproduced the diurnal cycle of SST in the in-situ data, with a mean bias of -0.005C and RMSE of 0.26C. The 31-year climatology revealed that the diurnal range was small across most regions, with higher values in the eastern and western equatorial Pacific, northern Indian Ocean, western Central America, northwestern Australia, and several coastal regions. Significant seasonal variation of diurnal SST existed in all basins. In the Atlantic and Pacific basins, this seasonal pattern was oriented north-south, following the variation in solar insolation, whereas in the Indian basin it was dominated by monsoonal variability. At the interannual scale, the results highlighted the relationship between diurnal and interannual variations of SST, and revealed that the diurnal warming in the central equatorial Pacific could be a potential climatic indicator for ENSO prediction.  相似文献   

16.
Using a non-linear statistical analysis called “self-organizing maps”, the interannual sea surface temperature (SST) variations in the southern Indian Ocean are investigated. The SST anomalies during austral summer from 1951 to 2006 are classified into nine types with differences in the position of positive and negative SST anomaly poles. To investigate the evolution of these SST anomaly poles, heat budget analysis of mixed-layer using outputs from an ocean general circulation model is conducted. The warming of the mixed-layer by the climatological shortwave radiation is enhanced (suppressed) as a result of negative (positive) mixed-layer thickness anomaly over the positive (negative) SST anomaly pole. This contribution from shortwave radiation is most dominant in the growth of SST anomalies. In contrast to the results reported so far, the contribution from latent heat flux anomaly is not so important. The discrepancy in the analysis is explained by the modulation in the contribution from the climatological heat flux by the interannual mixed-layer depth anomaly that was neglected in the past studies.  相似文献   

17.
徐志清  范可 《大气科学》2012,36(5):879-888
印度洋热力状况是影响全球气候变化和亚洲季风变异的一个重要的因素,但以往研究更多关注热带印度洋海温的变化,对南印度洋中高纬地区海温变化关注不够,由此限制了我们对印度洋的全面认识.本文研究了年际尺度上整个印度洋海温异常主导模态的特征及其对我国东部地区夏季降水的可能影响过程,以期望为气候变异研究及预测提供理论依据.研究结果表明:全印度洋海温异常年际变率的主导模态特征是在南印度洋副热带地区海温异常呈现西南—东北反向变化的偶极子模态,西极子位于马达加斯加以东南洋面,东极子位于澳大利亚以西洋面;同时,热带印度洋海温异常与东极子一致.当西极子为正的海温异常,东极子、热带印度洋为负异常时定义为正的印度洋海温异常年际变率模态;反之,则为负的印度洋海温异常年际变率模态.从冬至春,印度洋海温异常年际变率模态具有较好的季节持续性;与我国长江中游地区夏季降水显著负相关,而与我国华南地区夏季降水显著正相关.其可能的影响过程为:对于正的冬、春季印度洋海温异常年际变率模态事件,印度洋地区异常纬向风的经向大气遥相关使得热带印度洋盛行西风异常,导致春、夏季海洋性大陆对流减弱,使夏季西太平洋副热带高压强度偏弱、位置偏东偏北,造成华南地区夏季降水增多,长江中游地区降水减少;反之亦然.同时,印度洋海温异常年际变率模态可通过改变印度洋和孟加拉湾向长江中游地区的水汽输送而影响其夏季降水.  相似文献   

18.
In this study the potential impact of the anticipated increase in the greenhouse gas concentrations on different aspects of the Indian summer monsoon is investigated, focusing on the role of the mechanisms leading to these changes. Both changes in the mean aspects of the Indian summer monsoon and changes in its interannual variability are considered. This is done on the basis of a global time-slice experiment being performed with the ECHAM4 AGCM at a high horizontal resolution of T106. The experiment consists of two 30-year simulations, one representing the present-day climate (period: 1970–1999) and one representing the future climate (period: 2060–2089). The time-slice experiment predicts an intensification of the mean rainfall associated with the Indian summer monsoon due to the general warming, while the future changes in the large-scale flow indicate a weakening of the monsoon circulation in the upper troposphere and only little change in the lower troposphere. The intensification of the monsoon rainfall in the Indian region is related to an intensification of the atmospheric moisture transport into this region. The weakening of the monsoon flow is caused by a pronounced warming of the sea surface temperatures in the central and eastern tropical Pacific and the associated alterations of the Walker circulation. A future increase of the temperature difference between the Indian Ocean and central India as well as a future reduction of the Eurasian snow cover in spring would, by themselves, lead to a strengthening of the monsoon flow in the future. These two mechanisms compensate for the weakening of the low-level monsoon flow induced by the warming of the tropical Pacific. The time-slice experiment also predicts a future increase of the interannual variability of both the rainfall associated with the Indian summer monsoon and of the large-scale flow. A major part of this increase is accounted for by enhanced interannual variability of the sea surface temperatures in the central and eastern tropical Pacific.  相似文献   

19.
Summary The Indian summer monsoon, one of the earth's most vigorous and energetic seasonally occurring weather events, influences the global atmospheric circulation. Its onset, duration, and intensity are governed by large- and meso-scale geophysical processes, such as surface solar heating and air-sea interactions. In this paper, using innovative combinations of satellite sensor data, we investigate some of these fundamental processes which are closely tied to clouds and control the monsoon system's evolution. The study, which focuses on the monsoon period of June, 1979, examines the low-frequency variability of clouds and their effects on air-sea processes through an analysis of the complex influence clouds play on the surface heat and water budgets. First, the effects of clouds on both the solar and longwave components of the surface radiation budget are assessed using a cloud radiative forcing parameter. While the effects of clouds on the long-wave irradiance act in a manner opposite to their effects on the shortwave irradiance, only a partial compensation is found to take place and the net effect results in a maximum cloud forcing of 60 Wm–2 in the southwestern Arabian Sea. Second, employing satellite-derived precipitation and evaporation estimates, the paper analyzes the net surface fresh water budget variability around the monsoon onset. This budget is important in that fresh water affects the upper ocean density distribution and, consequently, the thermohaline circulation. Two regions are found to dominate the analysis: the western Arabian Sea, where evaporation is dominant by more than 10 mm day–1, and the eastern Arabian Sea, where precipitation is dominant by more than 10 mm day–1. Thus, a strong zonal gradient of fresh water at the surface is established during the monsoon. The last topic investigated is the intraseasonal variability of convection as analyzed using a cloud parameter indicative of deep convection. Cloud oscillations of 30–50 days, associated with the different phases of the monsoon, are found to propagate northward in the eastern Indian Ocean and eastward in the Bay of Bengal. Our analysis not only supports the hypothesis that the 30–50-day oscillation is driven by deep convection but also, and more importantly, suggests that the ocean thermal forcing is modulated by 30–50-day oscillations through cloud-induced surface radiative forcing. Although the results presented are limited in scope and preliminary because of the diffculty in quantifying the accuracy of the parameters examined, they do demonstrate: 1) the role of clouds in modulating the surface heat and water budgets, 2) the advantage of using combinations of multi-sensor and multi-platform satellite observations to quantify interrelated surface heat/water budget processes, and 3) the potential to examine the intraseasonal variability of air-sea interaction processes associated with the monsoon, even though these processes are not directly measurable from space.With 6 FiguresB. DiJulio passed away in September 1990.  相似文献   

20.
Previous research has shown that most significant interannual variability of the net radiation balance is confined to a few distinct centers at low latitudes. North Africa is the only continental region within this zone which undergoes large amplitude interannual changes. This two part study focuses on the origins of the North African radiation balance variability, its relationship to precipitation processes, and the potential impact of confined regional variations on global climate. Part I investigates how net radiation perturbations can be decomposed into surface induced components and cloud induced components. The methodology is based on lengthy time series of satellite derived radiation budget and cloudiness quantities in conjunction with a technique derived from the Cess et al. (1982) study involving the formulation of a climate sensitivity parameter.The analysis shows that a significant portion of the interannual modulation of net radiation over North Africa arises from surface influences. Furthermore it appears that a significant part of the mechanism inducing these changes takes place through precipitation controls on the land surface. Cloud induced anomalies are important but represent the weaker of the two processes. Since North Africa is the sink portion of a large scale, cross-meridional energy transport dipole counterpoised to a large scale energy source in the Western Pacific, it is of fundamental importance on the global scale to determine the origins of net radiation variations within the sink.The analysis indicates three dominant time scales associated with precipitation feedback on the net radiation anomalies; a slow manifold of approximately 20 months; a fast manifold of 2.5 months; and a semi-annual manifold. These time scales underlie the surface and cloud forced net radiation anomalies in which southern, central, and northern latitude sectors of North Africa exhibit their own distinct modes of control on the regional radiation balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号