首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using ground‐penetrating radar, optically stimulated luminescence dating, particle‐size distribution and morphological analysis, the study of the construction phases of a vegetated linear dune in the arid north‐western Negev dunefield of Israel during the last millennium improves current knowledge about vegetated linear dunes that developed in the late Pleistocene. Vertical accretion in rapid pulses forming horizontally bedded units along the axis of vegetated linear dunes, regardless of their age, was found to be characteristic of vegetated linear dunes. The combination of the unique topographic feature of a longitudinal 5 m step‐like fall in dune crest elevation with the substantial narrowing of dune width constitutes a distinct morphological marker for interpreting local dune growth and stabilization of the last, albeit localized, dune mobilization episode at ca 0·5 ka. Evidence for lateral dune migration was not observed. Where local sediment supply exists, short episodes of powerful winds within the Holocene (with recurrence intervals separated by hundreds of years) can lead to the construction of vegetated linear dunes. The spatially constrained extent of such young dunes in the north‐western Negev may be due to limited sand availability because most of the Negev dunes were stable during the Holocene. These findings imply that vegetated linear dune construction can occur in glacial and interglacial (including Holocene) environments in semi‐arid to arid climates if certain conditions are met. In times of increased wind power during the Anthropocene, a period characterized by simultaneous rises in the human impact on the landscape and in climate variability (i.e. drought), local growth of vegetated linear dunes can be expected. This study demonstrates that ground‐penetrating radar is a reliable tool for interpreting the shallow internal structure of young vegetated linear dunes.  相似文献   

2.
《Quaternary Science Reviews》2003,22(10-13):1067-1076
This study is concerned with the Late Quaternary climatic chronology of the Strzelecki Desert dunefields in central Australia. The sand ridges comprise layers of quartz sand, some of which include palaeosol horizons with carbonated rootlets providing excellent opportunity for dating of alternations of dune building and stability by using optically stimulated luminescence (OSL). Deduced from the OSL age of the oldest aeolian layer dated, we conclude that the onset of aridity dates back to at least ∼65 ka. Older phases of aeolian activity though, following a fluvial depositional phase 160 ka ago, cannot be excluded, although no aeolian layers giving evidence for this have been found in the two dunes dated here. Unconsolidated dune sands in the upper part of one section with Late Holocene (4 ka to modern) depositional ages indicate a reactivation of the dunefield in recent times.From the crosscheck of 14C ages of the carbonated rootlets with OSL results it is concluded that under the given environmental conditions radiocarbon dating of the calcareous rootlets is not able to provide reliable ages for the phase of soil development.  相似文献   

3.
The linear dunes of the southern Kalahari dunefield constitute one of the major palaeoenvironmental proxies in the region. The application of optically stimulated luminescence (OSL) dating since the1990s and advancements in the depth of sampling using augering equipment over the past few years have permitted the reconstruction of linear dune accumulation chronostratigraphies for entire dune profiles from base to crest. These methods are applied to four dunes in the Mariental–Stampriet region of the southern Kalahari dunefield, sampled at predominantly 0.5 m intervals. Individual dunes record multiple phases of dune construction, but with only a few phases recorded consistently between two or more of the dunes. Results from the 48 OSL ages produced here extend the aeolian accumulation record for the southern Kalahari dunefield through the last three glacial–interglacial cycles with two ages from the early part of MIS6. A synthesis of all existing luminescence ages for the southern Kalahari reveals that the dunefield has been partially active throughout much of the past 120 ka. There are no clear clusters of ages within OSL age errors. This is in contrast to previous syntheses of ages for this region. In addition, these new data from Mariental–Stampriet dunes show that clusters in grouped dune OSL ages can be spuriously produced as a function of reducing the sampling frequency with depth within the dunes, from 0.5 to 1 mintervals. This has significant implications for previous conclusions regarding discrete phases of aeolian accumulation based on sampling at 1 m intervals and less vertically intensive sampling techniques. The total luminescence data set of 136 ages for the southern Kalahari implies that this dunefield has been close to the threshold of reactivation throughout much of the late Quaternary.  相似文献   

4.
石英光释光测年揭示的晚第四纪毛乌素沙地演化   总被引:12,自引:11,他引:1       下载免费PDF全文
本研究利用石英光释光测年的单片再生法(Single­aliquot Regenerative­dose Protocol,简称SAR)对毛乌素沙地内部西北-东南方向5个风成砂-砂质古土壤剖面进行了年代测定,结合年代框架和剖面沉积相、磁化率及粒度特征探讨了晚第四纪以来毛乌素沙地演化和气候变化。研究表明毛乌素沙地在晚第四纪以来经历了多次沙地固定与活化的交替演化: 距今91.0ka,71.0ka,48.0ka,22.0ka,11.6ka,5.0ka,1.1ka,1.0ka和0.4ka前后风成砂沉积,沙地活化,指示气候干旱,植被覆盖度低; 在距今65ka和全新世适宜期(8.5~5.0ka),沙地固定成壤,砂质古土壤发育,指示气候湿润。另外,剖面中风成砂层数变多、厚度增加、粒径变粗指示了晚第四纪以来毛乌素沙地干旱化趋势加强。  相似文献   

5.
《Quaternary Science Reviews》2003,22(10-13):1051-1058
The Great Plains of the Mid West USA contain dunefields which display stratigraphic evidence of episodic sand drift throughout the Holocene and, in some cases, the Late Pleistocene. Widespread aeolian activity has been linked to persistent megadroughts caused by a weakening of the tropical moisture-laden circulation from the Gulf of Mexico and equatorial Pacific. Infrared stimulated luminescence (IRSL) dating has been applied to two exposures in the Fort Morgan dunefield of northeastern Colorado where radiocarbon-dated buried soils provide ages for land surface stability. IRSL ages show that sand drift occurred episodically during the Late Holocene at 4.85, 2.37, 1.06, 0.80, 0.6–0.53 and 0.37 ka.  相似文献   

6.
《Quaternary Science Reviews》2003,22(10-13):1027-1033
The Liwa region of the United Arab Emirates contains some of the largest and most areally extensive megabarchanoid sand dunes on a global scale. Here we present optical dating results on samples of aeolian sediment from deep drill cores extracted from the largest dune field of the Liwa area. Optical dating of these core sediments using the single aliquot regeneration protocol indicates Mid–Late Holocene phases of rapid dune deposition, the most recent period of reactivation began at ca 2.8 ka. This event was preceded by a period of deposition at ca 5 ka. These results suggest that the dune systems of the southeastern Arabian Peninsula are closely linked to changes in Late Quaternary global climate, particularly linked to the intensity and spatial extent of palaeomonsoon rainfall. Since the last precessional maxima at ca 9 ka, at which time a peak in monsoonal rainfall has been recognised, a significant environmental transition to widespread desert conditions occurred in an apparently abrupt fashion. During the initial period of aridification, large quantities of sand were transported and deposited in the form of large and very large (up to 160 m high) scale aeolian bedforms. Following the initial phase of aeolian accumulation, the system appears to have remained in stasis.  相似文献   

7.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

8.
《Quaternary Science Reviews》2007,26(19-21):2617-2630
The linear dunes of the Kalahari, now largely inactive, have long been identified as having potential palaeoenvironmental significance. The application of optically stimulated luminescence (OSL) dating to these dunes in the 1990s provided the first chronology of aeolian accumulation in this region, though field methodologies and time-consuming multiple-aliquot laboratory protocols limited both the depth of sampling in dune bodies and the total number of samples dated.In order to permit a more thorough investigation of the potential of these dunes to preserve long chronological records, this intensive study presents 71 OSL ages from the linear dunes of the southwestern Kalahari at Witpan, South Africa, sampled with coring equipment at regular and frequent intervals down to bedrock.The earliest sand accumulation recorded at Witpan is at 104 ka, and in spatially discrete locations, other evidence of dune activity is recorded at 77–76, 57–52 and 35–27 ka. Although an inherently discontinuous archive, the linear dunes of the southwestern Kalahari have the potential to record multiple phases of dune construction. Following the Last Glacial Maximum there is near continuous evidence of dune-building, with a peak of accumulation recorded from 15 to 9 ka at five individual sites. This latter period is generally recognised from other proxy evidence as being unusually arid in this region, and such periods of dune activity are likely to be related to intensification of the continental anticyclone. During the Holocene, accumulation has continued at most sites sampled, albeit at a lesser intensity. This may imply that these dunes are presently not far from thresholds of activation.  相似文献   

9.
Five small dune fields were investigated in central Sweden in the field and by using LiDAR‐based remote sensing. The chronology of the dunes was determined using optically stimulated luminescence (OSL) dating. Most of the OSL ages indicate dune formation close to the time of deglaciation in this area of Sweden (11–10 cal. ka BP) and later sand drift events appear to have been uncommon, suggesting that most of the dune fields have been stable since their formation and throughout the Holocene. This makes them a valuable archive of past sand drift events and palaeowind directions, even though the dune fields are small compared to most other investigated dune fields around the world. The dunes are primarily of a transverse or parabolic type, and their orientation suggests formation by westerly or northwesterly winds. The local topography appears to have had little control over the formation of the dunes, suggesting that the dunes can be used as a proxy of regional wind directions. All dune fields in this study are linked to glacifluvial deposits that provide spatially and volumetrically limited sources of sand.  相似文献   

10.
The evolution processes and forcing mechanisms of the Horqin dunefield in northern China are poorly understood. In this study, systematic OSL dating of multiple sites is used together with pollen analysis of a representative section in order to reconstruct the evolution of the dunefield since the Last Glacial Maximum (LGM). Our results show that there was extensive dune mobilization 25–10 ka, transition to stabilization 10–8 ka, considerable dune stabilization 8–3 ka, and multiple episodes of stabilization and mobilization after 3 ka. Comparison of dune evolution of the dunefields in northern China during the Holocene showed that Asian monsoon and resultant effective moisture have played an important role in the evolution of dunefields at the millennial time scale. Further analysis indicated that the dune evolution in the Horqin dunefield before 3 ka was synchronous with climatic changes. However, increasing human activity has impacted dune evolution during the last 3 ka.  相似文献   

11.
The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote‐sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age‐bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short‐lived aeolian constructional events since ~25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ~12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ~7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform‐normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests.  相似文献   

12.
M. R. TALBOT 《Sedimentology》1985,32(2):257-265
Large areas of fixed, vegetated dunes occur in the Sahel and southern margin of the Sahara. These dunes were active during Late Pleistocene times and have been stabilized as a result of a change to more humid, less windy conditions in the Holocene. The stabilized surfaces, which are in part of erosional origin, are of regional extent. Within aeolian sand sequences, such surfaces form the highest order bounding surfaces. Since regional bounding surfaces of this type occur in all the world's major deserts, it is suggested that they should also be present in some ancient aeolian sandstone sequences.  相似文献   

13.
Outcrops and cored/counter‐flushed boreholes in the coastal area between Espinho and Aveiro (north‐west Portugal) were investigated to reconstruct the changing patterns of sedimentation during the Late Pleistocene–Holocene. To obtain a common comparison basis, the grain‐size data from outcrop and borehole samples were analysed. The outcrops and the cored parts of the boreholes were dated by radiocarbon and optically stimulated luminescence. The results show that, on top of pebble‐rich beds of fluvial origin, a wet aeolian dune and interdune environment was active during the later part of the Pleistocene, turning to dry aeolian at the transition to the Holocene. The data indicate also that aeolian accumulation was controlled by vegetation changes (climate) and groundwater table fluctuations. During the Holocene, a podzol formed on the Pleistocene dunes and extensive vegetation precluded major aeolian accumulations. Remobilization of sand started again because of human deforestation and – last but not least – the Little Ice Age.  相似文献   

14.
海南岛东北海岸风沙沉积的光释光年代学意义   总被引:1,自引:0,他引:1  
选取海南岛东北部JSD2和PQR2两个典型海岸沙质沉积剖面进行研究,共采集10个测年样品和89个指标分析样品,在室内进行了光释光(OSL)测年和粒度分析。结果表明:1)JSD2和PQR2剖面砂样以中细沙为主,粒度众数在225~400 μm之间。风沙沉积后受化学风化作用呈现淡红棕色至红棕色;2)JSD2剖面OSL年龄范围为(2.20±1.09)~(9.89±1.65) ka,属于全新世风沙沉积;PQR2剖面年龄范围为(3.41±0.78)~(22.50±1.07) ka,上部为全新世风沙沉积,下部为末次冰期和晚冰期的老红砂层;3)综合海南岛和华南其他海岸沙丘、海岸风沙年龄数据分析,研究区全新世海岸风沙沉积年代序列可划分为10.5~6.0 ka B.P.和6.0 ka B.P.以来两个阶段,华南热带与亚热带海岸风沙活动趋势基本一致。  相似文献   

15.
《Quaternary Science Reviews》2004,23(16-17):1733-1756
This study shows that successions of Pleistocene carbonate aeolian deposits can be placed successfully in a geochronologic framework using magnetostratigraphic and susceptibility stratigraphic analysis supplemented by luminescence dating, studies of wave-cut platforms, and biostratigraphic evidence. The investigated aeolian system covers a significant part of southernmost Mallorca and is exposed in impressive coastal cliff sections.At the study site at Els Bancals the aeolian system has a maximum thickness of 16 m and is composed of alternating dark red colluvial deposits and greyish red aeolian dune and sand-sheet deposits forming seven cyclostratigraphic units. Each cyclostratigraphic unit represents landscape stabilisation, colluviation, and soil formation followed by dunefield development, when marine carbonate sand was transported far inland by westerly or north-westerly winds. The aeolian system is located on top of a wave-cut marine platform 12–14 m a.s.l. This platform probably formed during a sea-level highstand in Marine Isotope Stage (MIS) 11 (427–364 ka), and renewed marine activity probably later in MIS 11 is indicated by the formation of beach deposits.Two sections at Els Bancals were sampled for a paleomagnetic study; additional samples were taken to detect variations in magnetic susceptibility (MS). The characteristic remanent magnetisation has been recovered for the most part of the succession in spite of diagenetic overprinting. There is evidence for two probably three reversal polarity excursions, possible connected to the Levantine, CR1 and CR0/Biwa III episodes. If this correlation is correct, the sampled succession represents a time interval in the Middle Pleistocene between ca 410 and ca 260 ka. This age estimate is supported by the MS study and by luminescence dates of 333±70 ka (aeolianite from lower part of the succession) and 275±23 ka (aeolianite from the top of the succession).The nature of the succession suggests deposition during alternating warm and moist (colluvial deposition; soil formation) and cold, dry and windy conditions (dunefield formation). The susceptibility signal can be correlated with the insolation signal at 65°N suggesting that environmental variation on Mallorca was linked to orbitally forced climate change, and it seems that aeolian activity and dunefield formation were linked to glacial or stadial periods.  相似文献   

16.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   

17.
《Quaternary Science Reviews》2007,26(19-21):2598-2616
Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood. In this study, we collected 82 samples from 26 sites across the Strzelecki and Tirari Deserts in the driest part of central Australia to provide an optically stimulated luminescence chronology for these dunefields. The dunes preserve up to four stratigraphic horizons, bounded by palaeosols, which represent evidence for multiple periods of reactivation punctuated by episodes of increased environmental stability. Dune activity took place in episodes around 73–66, 35–32, 22–18 and 14–10 ka. Intermittent partial mobilisation persisted at other times throughout the last 75 ka and dune activity appears to have intensified during the late Holocene. Dune construction occurred when sediment was available for aeolian transport; in the Strzelecki and Tirari Deserts, this coincided with cold, arid conditions during Marine Isotope Stage (MIS) 4, late MIS 3 and MIS 2, and the warm, dry climates of the late Pleistocene–Holocene transition period and late Holocene. Localised influxes of sediment on active floodplains and lake floors during the relatively more humid periods of MIS 5 also resulted in dune formation. The timing of widespread dune reactivation coincided with glaciation in southeastern Australia, along with cooler temperatures in the adjacent oceans and Antarctica.  相似文献   

18.
在毛乌素沙漠东南缘锦界地区发现的具有3层深棕色至黑色古土壤的全新世剖面,记录了至少3次大型沙地固定与活化的交替演化.在锦界剖面厚约5m的全新世地层中采集了10个光释光样品,利用石英光释光测年单片再生法(SAR),建立了锦界剖面全新世(>7.5-0.2ka)年代格架.结合粒度、磁化率气候变化代用指标和光释光年龄序列,得到...  相似文献   

19.
Optical stimulated luminescence (OSL) study on sand and fossil soils from Hulun Buir Dunefield in Eastern China is reported in this paper. Aeolian dune sequences responded to the climate change by alternations of aeolian sand and dark sandy soils, which corresponded to arid and humid conditions, respectively. Optical dating using the single aliquot regeneration technique with quartz was applied to the deposits. The results indicate that the soils and underlying aeolian sand correspond to the Holocene optimum (HO) and the last late glacial, respectively. Combined with studies of OSL dating of 13 profiles and grain-size, magnetic susceptibility, total organic carbon, sediment color and scanning electron microscopy measurements for two representative sections, indicate the expansion in the last late glacial sand was 10 times that of today. The dune field was not totally stabilized by vegetation cover until HO (10–5 ka BP).  相似文献   

20.
《Quaternary Science Reviews》1999,18(4-5):573-591
In the endoreic, semi-arid Konya basin on the central Anatolian plateaux, long-term hydrological evolution has left various landforms and lacustrine deposits reflecting the regional climatic evolution, as well as human influence on the local environments. This paper presents results from a cooperative programme grouping several institutes from Turkey and France, on lacustrine, marshy and aeolian sediment sequences of Upper Pleistocene and Holocene age. The detailed study of environmental evolution is based on the reconstruction as well as on the characterization of the extension and contraction phases of wetlands occupying the lowest parts of the Konya plain. A soil and a marsh layer are 14C dated ca. 28,000–25,000 yr bp. Three phases of Pleniglacial (from ca. 22,000 to 17,000 yr bp) high lake levels are distinguished. Complementary OSL dates on aeolian dunes confirm the occurrence of two drought periods: the first occurs around the start of the Late Glacial, the second after the Mid-Holocene climatic optimum, the latter being ‘in phase’ with a similar drought in other Eastern Mediterranean regions. After 17,000 yr bp, no lacustrine phase reached as high a level as the Pleniglacial lake. During the Late Glacial, a shallow freshwater lacustrine phase is identified from >12,500 to 11,000 yr bp. The Late Glacial to Holocene transition corresponds to a general absence of deposits and dateable material, thus suggesting a period of drought, to which no aeolian features have so far been related. The Holocene environmental evolution shows a period of marsh and shallow lake extansion from 6000 to 5500 yr bp; this wetter period is interrupted by the second drought (ca. 5500 yrs bp) as indicated by aeolian dune activity. During the Late Holocene, a renewal of marshes, as well as soil development on slopes, can be interpreted either as climatic changes or as impacts of human use of water and soil resources during prehistoric and historic times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号