首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A peat cellulose δ18O record spanning around 14,000 years from the Hani peat mire in northeastern China reveals several abrupt temperature anomalies in the period from the last deglaciation through the Holocene. The timing of these anomalies coincides well with the notable cooling events recorded respectively using the GISP2 ice core and ice-rafted sediment of the North Atlantic Ocean, such as the Older Dryas, Inter-Allerød, Younger Dryas, and the nine ice-rafted debris events. The results demonstrate that this repeating pattern of abrupt temperature deterioration is not limited to the North Atlantic area at high latitude but also exists in the western North Pacific region at middle latitude. The synchronous temperature anomalies possibly are resulted from the joint effects of meltwater discharge into the North Atlantic Ocean and reduced solar activity. In the period from around 8600 to 8200 cal. yrs BP the Hani peat record shows a broad δ18O peak that may reflect compound climate signals resulting from the two kinds of forcing factors: the temperature drop related to reduced solar activity at around 8600–8250 cal. yrs BP, and the temperature anomaly attributed to the meltwater effect at around 8220 ± 70 cal. yrs BP. This result may provide palaeo-temperature evidence for existence of the sharp “8.2 k” event in the western North Pacific region. In addition, our results have revealed that in the period from the last deglaciation through the Holocene the synchronous temperature anomalies before and after the “8.2 k” event seem to be related to meltwater outflow and reduced solar activity, respectively. It is important that the all temperature anomalies—whether because of reduced solar activity in the late Holocene or from meltwater discharge in the early Holocene—are accompanied by an abrupt decline in the Indian Ocean summer monsoon and abrupt strengthening of the East Asian summer monsoon. It is likely that reduced solar activity and meltwater outflow appear to modulate Earth system changes in the same direction. The influences could be compounded. Reduced solar activity and meltwater outburst both appear to act as triggers for occurrence of the El Niño phenomenon in the equatorial Pacific Ocean, which may result in broad teleconnections between the temperature anomaly in the Northern Hemisphere and abrupt variation of the Asian monsoon.  相似文献   

2.
We use a series of tests to evaluate two competing hypotheses about the association of climate and vegetation trends in the northeastern United States over the past 15 kyrs. First, that abrupt climate changes on the scale of centuries had little influence on long-term vegetation trends, and second, that abrupt climate changes interacted with slower climate trends to determine the regional sequence of vegetation phases. Our results support the second. Large dissimilarity between temporally close fossil pollen samples indicates large vegetation changes within 500 years across >4° of latitude at ca 13.25–12.75, 12.0–11.5, 10.5, 8.25, and 5.25 ka. The evidence of vegetation change coincides with independent isotopic and sedimentary indicators of rapid shifts in temperature and moisture balance. In several cases, abrupt changes reversed long-term vegetation trends, such as when spruce (Picea) and pine (Pinus) pollen percentages rapidly declined to the north and increased to the south at ca 13.25–12.75 and 8.25 ka respectively. Abrupt events accelerated other long-term trends, such as a regional increase in beech (Fagus) pollen percentages at 8.5–8.0 ka. The regional hemlock (Tsuga) decline at ca 5.25 ka is unique among the abrupt events, and may have been induced by high climatic variability (i.e., repeated severe droughts from 5.7 to 2.0 ka); autoregressive ecological and evolutionary processes could have maintained low hemlock abundance until ca 2.0 ka. Delayed increases in chestnut (Castanea) pollen abundance after 5.8 and 2.5 ka also illustrate the potential for multi-century climate variability to influence species' recruitment as well as mortality. Future climate changes will probably also rapidly initiate persistent vegetation change, particularly by acting as broad, regional-scale disturbances.  相似文献   

3.
A lake-level record of Lake Ledro (northern Italy) spans the entire Holocene with a chronology derived from 51 radiocarbon dates. It is based on a specific sedimentological approach that combines data from five sediment profiles sampled in distinct locations in the littoral zone. On a millennial scale, the lake-level record shows two successive periods from 11,700 to 4500 cal yr BP and from 4500 cal yr BP to the present, characterized by lower and higher average lake levels, respectively. In addition to key seasonal and inter-hemispherical changes in insolation, the major hydrological change around 4500 cal yr BP may be related to a non-linear response of the climate system to orbitally-driven gradual decrease in insolation. The Ledro record questions the notion of an accentuated summer rain regime in the northern Mediterranean borderlands during the boreal insolation maximum. Moreover, the Ledro record highlights that the Holocene was punctuated by successive centennial-scale highstands. Correlations with the Preboreal oscillation and the 8.2 ka event, and comparison with the atmospheric 14C residual record, suggest that short-lived lake-level fluctuations developed at Ledro in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity.  相似文献   

4.
《Quaternary Science Reviews》2007,26(9-10):1432-1453
The sediments of a small lake on Nordkinnhalvøya, Finnmark, Norway, were investigated in order to test the hypothesis that this region was sensitive to centennial–millennial climatic fluctuations during the Holocene related to changes in ocean circulation. Sedimentation at the site began during the Younger Dryas, although the site chronology, developed using a series of 14C age measurements, reveals an early Holocene hiatus in accumulation. Pollen analysis confirmed that the regional vegetation responded to Holocene climatic variability at centennial–millennial time scales and provided data used to make quantitative palaeoclimate reconstructions. The latter indicate that marked changes in seasonality characterised Holocene climatic fluctuations. Intervals with warmer summers, higher temperature sums and higher precipitation, but cooler winters and generally reduced moisture availability, alternated with intervals with cooler summers, lower temperature sums, lower precipitation, warmer winters and greater moisture availability. The former conditions were more prevalent between ca 8950 and 3950 cal BP, whereas the latter were predominant before ca 8950 and since ca 3950 cal BP. Sediment geochemistry indicates minerogenic material deposited in the lake was probably derived from two or more distinct sources or transport pathways that differed in their responses to palaeoclimatic conditions. A series of cryptotephras were located, although the small size of the shards rendered them unsuitable for electron microprobe analyses. Time-series analysis of pollen analytical and sediment geochemical data indicates that each exhibits statistically significant periodic behaviour (at periods of ca 190, 410, 1050, 1650 and 1810 yr). The periods detected suggest this behaviour may reflect regional expression of climate system responses to solar variability and/or of effects upon tides and ocean circulation of periodic lunar orbital variation. Comparison with records of fluctuations in ocean thermohaline circulation strength indicate some concordance with respect to timing of warmer and cooler intervals, but also some differences. The 8.2 ka event, that is evident in marine records from the Barents Sea, is clearly expressed by both the palaeovegetation and geochemical records. Distinctive temporal behaviour of the palaeovegetation and of different geochemical components indicates complexity in the underlying causes and mechanisms of regional climatic variability; ocean circulation variability alone cannot account for the complex climatic variability observed.  相似文献   

5.
The paleoclimatic record of Juréia Paleolagoon, coastal southeastern Brazil, includes cyclic and gradual changes with different intensities and frequencies through geological time, and it is controlled by astronomical, geophysical, and geological phenomena. These variations are not due to one single cause, but they result from the interaction of several factors, which act at different temporal and spatial scales. Here, we describe paleoenvironmental evidence regarding climatic and sea level changes from the last 9400 cal yr BP at the Juréia Paleolagoon — one of the main groups of protected South Atlantic ecosystems. Geochemical evidences were used to identify anomalies from multi-proxy analyses of a paleolagoon sediment core. The anomalies of centennial scale were correlated to climate and transgression–regression cycles from the Holocene period. Decadal scale anomalous oscillations in the Quaternary paleolagoon sediments occur between 9400 and 7500 cal yr BP, correlated with long- and short-term natural events, which generated high sedimentation rates, mainly between 8385 and 8375 cal yr BP (10 cm/yr). Our results suggest that a modern-day short-duration North Atlantic climatic event, such as the 8.2 ka event, could affect the environmental equilibrium in South America and intensify the South American Summer Monsoon.  相似文献   

6.
Fossil pollen analyses from northern Lake Malawi, southeast Africa, provide a high-resolution record of vegetation change during the Pleistocene/Holocene transition (~ 18–9 ka). Recent studies of local vegetation from lowland sites have reported contrasting rainfall signals during the Younger Dryas (YD). The Lake Malawi record tracks regional vegetation changes and allows comparison with other tropical African records identifying vegetation opening and local forest maintenance during the YD. Our record shows a gradual decline of afromontane vegetation at 18 ka. Around 14.5 ka, tropical seasonal forest and Zambezian miombo woodland became established. At ~ 13 ka, drier, more open formations gradually became prevalent. Although tropical seasonal forest taxa were still present in the watershed during the YD, this drought-intolerant forest type was likely restricted to areas of favorable edaphic conditions along permanent waterways. The establishment of drought-tolerant vegetation followed the reinforcement of southeasterly tradewinds resulting in a more pronounced dry winter season after ~ 11.8 ka. The onset of the driest, most open vegetation type was coincident with a lake low stand at the beginning of the Holocene. This study demonstrates the importance of global climate forcing and local geomorphological conditions in controlling vegetation distribution.  相似文献   

7.
《Quaternary Science Reviews》2007,26(19-21):2438-2462
Curves for Holocene lake levels and salinity changes are presented for An Loch Mór, a small oligohaline lake on the Aran Islands off the west coast of Ireland, based on palaeoecological investigations of a 12 m long, lake-sediment core. New insights are also provided into Holocene sea-level change in the Galway Bay region. Particular emphasis has been placed on the ostracod fauna, both past and present. Salinity and lake-level changes were reconstructed from the fossil ostracod assemblages, based on the known tolerances of individual species and on the assemblages as a whole. Additional evidence was provided by other proxies including strontium–isotope ratios derived from ostracod shells and other carbonates, plant macrofossil and pollen analyses, and sedimentological changes. The early Holocene (pre-Boreal, i.e. 11.5–10 ka) was characterised by low lake levels and slightly elevated salinity values, probably the result of high evapotranspiration and low precipitation rather than elevated sea levels. Early Holocene plant and animal migration to the island does not seem to have been impeded but relative sea levels were not necessarily so low (below −40 m a.s.l.) that landbridges were present to the mainland. Between ca 10 and 8.5 ka, relatively high lake levels prevailed. At 8.3 and 7.5 ka, minor fluctuations (lowering) of the lake level occurred that are assumed to relate to early Holocene abrupt events. Beginning at 7.05 ka, lake levels declined sharply. A general trend towards rising lake levels started at ca 6.4 ka and accelerated at ca 5.6 ka as runoff increased as a result of Neolithic clearances. At ca 4.8 ka, lake levels began to rise once again, probably in response to changes in rainfall and/or evapotranspiration and runoff. Lower lake levels during the first half of the 1st millennium AD were probably a response to decreased runoff as a result of a drier climate coupled with regeneration of woody vegetation. The sharpest rise in both lake levels and salinity began during the ninth century AD, which is attributed to a rapid rise in relative sea level.  相似文献   

8.
Changes in the orbital parameters, solar output, and ocean circulation are widely considered as main drivers of the Holocene climate. Yet, the interaction between these forcings and the role that they play to produce the pattern of changes observed in different domains of the climate system remain debated. Here, we present new early to middle Holocene season-specific sea surface temperature (SST) and δ18Oseawater results, based on organic-walled dinoflagellate cyst and planktonic foraminiferal data from two sediment cores located in the central (SL21) and south-eastern (LC21) Aegean Sea (eastern Mediterranean). Today, this region is affected by high to mid latitude climate in winter and tropical/subtropical climate in summer. The reconstructed δ18Oseawater from LC21 displays a marked (~1.3%) negative shift between 10.7 and 9.7 ka BP, which represents the regional expression of the orbitally driven African monsoon intensification and attendant freshwater flooding into the eastern Mediterranean. A virtually contemporaneous shift, of the same sign and magnitude, is apparent in the δ18Ospeleothem record from Soreq Cave (Northern Israel), an important part of which may therefore reflect a change in the isotopic composition of the moisture source region (Aegean and Levantine Seas). Our SST reconstructions show that Aegean winter SSTs decreased in concert with intensifications of the Siberian High, as reflected in the GISP2 nss [K+] record. Specifically, three distinct sea surface cooling events at 10.5, 9.5–9.03 and 8.8–7.8 ka BP in the central Aegean Sea match increases in GISP2 nss [K+]. These events also coincide with dry interludes in Indian monsoon, hinting at large (hemispheric) scale teleconnections during the early Holocene on centennial timescales. A prominent short-lived (~150 years) cooling event in core SL21 – centred on 8.2 ka BP – is coeval to the ‘8.2 ka BP event’ in the Greenland δ18Oice, which is commonly linked to a melt-water related perturbation of the Atlantic Meridional Overturning Circulation and associated ocean heat transport. By deciphering the phasing between a recently published record of reduced overflow from the Nordic Seas into the northern North Atlantic, the Greenland δ18Oice ‘8.2 ka BP event’ anomaly, and the short-lived cooling in SL21, we demonstrate severe far-field impacts of this North Atlantic event in the Aegean Sea. The Aegean is isolated from the North Atlantic oceanic circulation, so that signal transmission must have been of an atmospheric nature.  相似文献   

9.
We employed X-ray diffraction methods to quantify clay mineral assemblages in the Indus Delta and flood plains since ~ 14 ka, spanning a period of strong climatic change. Assemblages are dominated by smectite and illite, with minor chlorite and kaolinite. Delta sediments integrate clays from across the basin and show increasing smectite input between 13 and 7.5 ka, indicating stronger chemical weathering as the summer monsoon intensified. Changes in clay mineralogy postdate changes in climate by 5–3 ka, reflecting the time needed for new clay minerals to form and be transported to the delta. Samples from the flood plains in Punjab show evidence for increased chemical weathering towards the top of the sections (6–< 4 ka), counter to the trend in the delta, at a time of monsoon weakening. Clay mineral assemblages within sandy flood-plain sediment have higher smectite/(illite + chlorite) values than interbedded mudstones, suggestive of either stronger weathering or more sediment reworking since the Mid Holocene. We show that marine records are not always good proxies for weathering across the entire flood plain. Nonetheless, the delta record likely represents the most reliable record of basin-wide weathering response to climate change.  相似文献   

10.
《Quaternary Science Reviews》2007,26(9-10):1212-1222
How fast and how much climate can change has significant implications for concerns about future climate changes and their potential impacts on society. An abrupt climate change 8200 years ago (8.2 ka event) provides a test case to understand possible future climatic variability. Here, methane concentration (taken as an indicator for terrestrial hydrology) and nitrogen isotopes (Greenland temperature) in trapped air in a Greenland ice core (GISP2) are employed to scrutinize the evolution of the 8.2 ka event. The synchronous change in methane and nitrogen implies that the 8.2 ka event was a synchronous event (within ±4 years) at a hemispheric scale, as indicated by recent climate model results [Legrande, A. N., Schmidt, G. A., Shindell, D. T., Field, C. V., Miller, R. L., Koch, D. M., Faluvegi, G., Hoffmann, G., 2006. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proceedings of the National Academy of Sciences 103, 837–842]. The event began with a large-scale general cooling and drying around ∼8175±30 years BP (Before Present, where Present is 1950 AD). Greenland temperature cooled by 3.3±1.1 °C (decadal average) in less than ∼20 years, and atmospheric methane concentration decreased by ∼80±25 ppb over ∼40 years, corresponding to a 15±5% emission reduction. Hemispheric scale cooling and drying, inferred from many paleoclimate proxies, likely contributed to this emission reduction. In central Greenland, the coldest period lasted for ∼60 years, interrupted by a milder interval of a few decades, and temperature subsequently warmed in several steps over ∼70 years. The total duration of the 8.2 ka event was roughly 150 years.  相似文献   

11.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

12.
The climates on the eastern Tibetan Plateau are strongly influenced by direct insolation heating as well as monsoon-derived precipitation change. However, the moisture and temperature influences on regional vegetation and climate have not been well documented in paleoclimate studies. Here we present a well-dated and high-resolution loss-on-ignition, peat property and fossil pollen record over the last 10,000 years from a sedge-dominated fen peatland in the central Zoige Basin on the eastern Tibetan Plateau and discuss its ecological and climatic interpretations. Lithology results indicate that organic matter content is high at 60–80% between 10 and 3 ka (1 ka = 1000 cal yr BP) and shows large-magnitude fluctuations in the last 3000 years. Ash-free bulk density, as a proxy of peat decomposition and peatland surface moisture conditions, oscillates around a mean value of 0.1 g/cm3, with low values at 6.5–4.7 ka, reflecting a wet interval, and an increasing trend from 4.7 to 2 ka, suggesting a drying trend. The time-averaged mean carbon accumulation rates are 30.6 gC/m2/yr for the last 10,000 years, higher than that from many northern peatlands. Tree pollen (mainly from Picea), mostly reflecting temperature change in this alpine meadow-forest ecotonal region, has variable values (from 3 to 34%) during the early Holocene, reaches the peak value during the mid-Holocene at 6.5 ka, and then decreases until 2 ka. The combined peat property and pollen data indicate that a warm and wet climate prevailed in the mid-Holocene (6.5–4.7 ka), representing a monsoon maximum or “optimum climate” for the region. The timing is consistent with recent paleo-monsoon records from southern China and with the idea that the interplays of summer insolation and other extratropical large-scale boundary conditions, including sea-surface temperature and sea-level change, control regional climate. The cooling and drying trend since the mid-Holocene likely reflects the decrease in insolation heating and weakening of summer monsoons. Regional synthesis of five pollen records along a south–north transect indicates that this climate pattern can be recognized all across the eastern Tibetan Plateau. The peatland and vegetation changes in the late Holocene suggest complex and dramatic responses of these lowland and upland ecosystems to changes in temperature and moisture conditions and human activities.  相似文献   

13.
The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (∼3300–3000 cal yr BP, ∼2600–1600 cal yr BP, and ∼900–600 cal yr BP), and three weakened ASM intervals (∼4000–3300 cal yr BP, ∼3000–2600 cal yr BP, and ∼1600–900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ∼1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic–atmospheric circulation probably have influenced the late Holocene climate variability in the study region.  相似文献   

14.
《Quaternary Science Reviews》2007,26(13-14):1695-1712
The impact of the 8.2 ka cooling event during the Early–Mid Holocene has not been widely observed in Southern Europe, which in contrast to Northern Europe, was already experiencing a cooler than present climate at this time. Multi-proxy analysis of sediment cores from two closed-basin saline lakes in the Central Ebro Desert (NE Spain) has allowed us to investigate the impact of climatic changes around the time of this event in more detail. Long-term changes in climate between the Early and Mid Holocene indicate a shift in winter to a more positive NAO, resulting in declining lake levels in one lake sensitive to winter groundwater recharge, and cooler winter temperatures reconstructed from pollen–climate analysis. Reconstructed summer temperatures also declined over this period while annual precipitation and forest cover increased, interpreted as a result of enhanced convection-driven summer precipitation association with a northward displacement of the sub-tropical high pressure. Around 8.2 ka, a marked increase in fire frequency is shown between ca 8.8 and 8.0 ka BP, along with an expansion of fire-tolerant evergreen oak and peak in water levels in a second storm run-off fed lake. A maximum in fire intensity occurred with the deposition of a charcoal layer at both lake sites dated to 8150±130 and 8285±135 cal BP, respectively. The increase in fire is largely attributed to a temporary return southward of the summer sub-tropical high pressure over the Mediterranean, which not only increased summer aridity, but also caused a contradictory regional warming before Hemispheric cooling set in.  相似文献   

15.
《Quaternary Science Reviews》2007,26(13-14):1736-1758
This paper presents a high-resolution lake-level record for the Holocene at Lake Accesa (Tuscany, north-central Italy) based on a range of sedimentological techniques validated in previous studies, with a chronology derived from 43 radiocarbon dates and four tephra layers. It gives evidence of centennial-scale fluctuations with major highstands at ca 11 500, 11 100, 10 200, 9400, 8200, 7300, 6200, 5700–5200, 4850, 4200, 3400, 2600, 1200 and 400 cal BP. Except for the Early Holocene until ca 10 500 cal BP, this pattern of hydrological changes appears to be in agreement with the regional pattern established for west-central Europe. Correlations with the Preboreal oscillation and the 8.2 ka event as well as with the atmospheric 14C residual series suggest that lake-level fluctuations developed at Accesa in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity. For the period after 4500 cal BP, correlations with other palaeohydrological records from central Italy indicate that lake-level changes reconstructed at Accesa were mainly driven by climatic variations while anthropic activities and local geomorphological factors only played a secondary role. The Accesa lake-level record also highlights millennial-scale variations with a maximal lowstand at ca 9200–7700 cal BP contemporaneous with Sapropel event 1 in the Mediterranean. It was followed by generally higher lake-level conditions. This appears to be the opposite of that observed in Sicily (southern Italy) where a lake-level maximum developed at ca 9000–8200 cal BP and was followed by a general trend towards aridification. These opposite patterns were interpreted as contrasting hydrological responses to orbitally induced changes in summer insolation. This interpretation has to be tested by further lake-level studies in the central Mediterranean region. Finally, correlations between major lowstands and periods of maximal representation of Quercus ilex point to convergences between climate oscillations and Holocene vegetation history in the Accesa region. However, the maximal representation of Abies during the first half of the Holocene, including a time window where lake level reached a minimal level, suggests a more subtle impact of seasonality processes.  相似文献   

16.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

17.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

18.
Many sediment records from the margins of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland ice (Dansgaard–Oeschger, D–O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60–24 cal ka), the Bölling/Alleröd warm interval (B/A; 15–13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental margins. The main conclusion from these proxies is that during the last glacial interval (LGI; 24–15 cal ka) and the Younger Dryas cold interval (YD; 13–11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all margins of the Californias. The Corg and trace-element profiles in the LGI–B/A–Holocene transition in the Cariaco Basin on the margin of northern Venezuela are remarkably similar to those in the transition on the northern California margin. Correlation between D–O cycles in Greenland ice with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the margins of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland ice core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the margins of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of atmospheric circulation produced rapid changes in circulation in the eastern North Pacific Ocean. It is likely that the Pacific and Atlantic Oceans were linked through the atmosphere. Warmer air temperatures during interstadials would have strengthened Hadley and Walker circulations, which, in turn, would have strengthened the subtropical high pressure systems in both the North Pacific and the North Atlantic, producing increased rainfall over the Cariaco Basin and increased upwelling along the margins of the Californias.  相似文献   

19.
《Quaternary Science Reviews》2005,24(12-13):1375-1389
High-resolution analyses of the elemental composition of calcite and biogenic silica (BSi) content in piston cores from Lake Edward, equatorial Africa, document complex interactions between climate variability and lacustrine geochemistry over the past 5400 years. Correlation of these records from Lake Edward to other climatically-forced geochemical and lake level records from Lakes Naivasha, Tanganyika, and Turkana allows us to develop a chronology of drought events in equatorial East Africa during the late Holocene. Major drought events of at least century-scale duration are recorded in lacustrine records at about 850, 1500, ∼2000, and 4100 cal year BP. Of these, the most severe event occurred between about 2050 and 1850 cal year BP, during which time Lake Edward stood about 15 m below its present level. Numerous additional droughts of less intensity and/or duration are present in the Lake Edward record, some of which may be correlated to other lacustrine climate records from equatorial East Africa. These events are superimposed on a long-term trend of increasingly arid conditions from 5400 to about 2000 cal year BP, followed by a shift toward wetter climates that may have resulted from an intensification of the winter Indian monsoon. Although the causes of decade- to century-scale climate variability in the East African tropics remain obscure, time-series spectral analysis suggests no direct linkage between solar output and regional rainfall. Rather, significant periods of ∼725, ∼125, 63–72, 31–25, and 19–16 years suggest a tight linkage between the Indian Ocean and African rainfall, and could result from coupled ocean-atmosphere variability inherent to the tropical monsoon system.  相似文献   

20.
《Quaternary Science Reviews》2007,26(15-16):2019-2029
Three potential mechanisms behind centennial-scale Holocene cooling events are studied in simulations performed with the coupled climate model ECBilt–CLIO: (1) internal variability, (2) solar forcing, and (3) freshwater forcing. In experiments with constant preindustrial forcings, three centennial-scale cooling events occur spontaneously in 15,000 years. These rare events represent an unstable internal mode of variability that is characterised by a weaker thermohaline circulation, a more southward location of the main site of deep-water formation, expanded sea-ice cover and cooling of 10 °C over the Nordic Seas. This mode is visited more frequently when the climate is cooled by abruptly reducing the solar constant by 5 or 3 Wm−2. Prescribing a solar forcing of the same magnitude, but following a sinusoidal function with a period of 100 or 1000 years, does not result in any centennial-scale cooling events. The latter forcing does however result in more frequent individual cold years in the North Atlantic region that are related to local weakening of the deep convection and sea-ice expansion. Adding realistic freshwater pulses to the Labrador Sea is also able to trigger centennial-scale cooling events with temperature anomalies resembling proxy evidence for the cooling event at 8.2 kyr BP, suggesting that freshwater forcing is a valid explanation for early Holocene cooling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号