首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this study, total suspended particles (TSP) and size-segregated atmospheric aerosol samples were measured on Qianliyan Island in the Yellow Sea in spring (April–May), summer (July–August) and fall (October–November) of 2006 and in water (January–February) of 2007. The mass concentration of the TSP varied from 75.6 to 132.0 μg/m3. The average concentration were 9.37 ± 7.56 μg/m3 and 5.32 ± 4.25 μg/m3 for nitrate and ammonium in the TSP, respectively. TSP concentration showed a significant correlation with those of nitrate (n = 27, r = 0.73) and ammonium (n = 27, r = 0.60). The mass-size distribution of atmospheric particles exhibited two modes with an accumulation mode at 0.43–1.1 μm and a coarse mode at 3.3–4.7 μm throughout the sampling months. A bi-modal size distribution of nitrate in concentration occurred in the April–May, October–November and January–February, but a uni-modal size distribution occurred in the August. The uni-modal size distribution of ammonium at 0.43–0.65 μm was observed throughout the sampling months. The average of inorganic nitrogen in mass concentration accounted for 4.0% of the total mass of aerosol particles while ammonium-N was the dominant fraction of TIN (Total Inorganic Nitrogen), contributing to 62–71% of the TIN.  相似文献   

2.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

3.
《Atmospheric Research》2009,91(2-4):253-263
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m 3 and 19.9 to 28.2 μg m 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

4.
The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m? 3 for PM10 and between 8.4 and 72.2 μg m? 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7–35.6 μg m? 3 and 46.0–53.5 μg m? 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km2), one PM monitoring site does not reflect an accurate PM level in Beirut.  相似文献   

5.
We analyzed a 20-year time series (January 1st, 1993 through December 31st, 2012) of Loop Current (LC) surface area derived from satellite altimetry in the eastern Gulf of Mexico to estimate kinematical metrics of this potent flow. On average the LC intrudes to its maximum northward position about 216 ± 126 days after the previous eddy separation; and ∼30 ± 31 days later sheds a large anticyclonic eddy. When the northern extent of the LC intrusion following the previous eddy separation is greater than 27°N, the current retreats very quickly until it sheds another eddy with the entire separation process occurring on the order of 30 days. To first order the change in areal extent of the LC during intrusion into the Gulf occurs at an average rate of 225 km2 day−1, which corresponds to an intrusion velocity of 1.7 cm s−1 of the LC front, and adds Caribbean water to the Gulf at a rate of 2.6 ± 0.7 Sv.  相似文献   

6.
The samples of water-soluble inorganic ions (WSIs), including anions (F?, Cl?, SO42?, NO3?) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56–51.27%, 40.04–60.81%, 42.02–60.81%, and 40.46–57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m? 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42? and NO3? were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl?, SO42? and NO3? were bimodal, peaking at 0.43–0.65 μm and 3.3–5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1–3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43–0.65 μm and a minor one at 3.3–4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.  相似文献   

7.
Urban growth is increasing the demand for freshwater resources, yet surprisingly the water sources of the world's large cities have never been globally assessed, hampering efforts to assess the distribution and causes of urban water stress. We conducted the first global survey of the large cities’ water sources, and show that previous global hydrologic models that ignored urban water infrastructure significantly overestimated urban water stress. Large cities obtain 78 ± 3% of their water from surface sources, some of which are far away: cumulatively, large cities moved 504 billion liters a day (184 km3 yr−1) a distance of 27,000 ± 3800 km, and the upstream contributing area of urban water sources is 41% of the global land surface. Despite this infrastructure, one in four cities, containing $4.8 ± 0.7 trillion in economic activity, remain water stressed due to geographical and financial limitations. The strategic management of these cities’ water sources is therefore important for the future of the global economy.  相似文献   

8.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

9.
《Atmospheric Research》2009,91(2-4):195-202
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

10.
《Atmospheric Research》2009,91(2-4):243-252
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

11.
The relationships between meteorological conditions (temperature, wind-speed and direction, relative humidity, surface-inversion depth and strength, and stability) and PM2.5 concentrations in Fairbanks, Alaska were investigated using ten years of observational data. The results show that during wintertime (November through February) PM2.5 concentrations exceeding the 24 h National Air Quality Standard (35 μg/m3) occurred under calm wind, extremely low temperature (≤20 °C) and moisture (water-vapor pressure < 2 hPa) multiday surface-inversion conditions that trap the pollutants in the breathing level and inhibit transport of polluted air out of Fairbanks. PM2.5 concentrations tend to be higher under stable than other conditions, but are not sensitive to the degree of stability. The presence of a surface inversion and calm wind are necessary, but in combination with low temperatures and humidity, the conditions are sufficient for high PM2.5 concentrations. The low temperatures are required because they lead to increased emission rates from domestic heating and power production. During multiday inversions with temperatures above ? 20 °C, high relative humidity (> 75%) partly caused by water-vapor emission reduces PM2.5 concentrations.  相似文献   

12.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

13.
Identifying the sources of reactive nitrogen (N) and quantifying their contributions to groundwater nitrate concentrations are critical to understanding the dynamics of groundwater nitrate contamination. Here we assessed groundwater nitrate contamination in China using literature analysis and N balance calculation in coupled human and natural systems. The source appointment via N balance was well validated by field data via literature analysis. Nitrate was detected in 96% of groundwater samples based on a common detection threshold of 0.2 mg N L?1, and 28% of groundwater samples exceeded WHO's maximum contaminant level (10 mg N L?1). Groundwater nitrate concentrations were the highest beneath industrial land (median: 34.6 mg N L?1), followed by urban land (10.2 mg N L?1), cropland (4.8 mg N L?1), and rural human settlement (4.0 mg N L?1), with the lowest found beneath natural land (0.8 mg N L?1). During the period 1980–2008, total reactive N leakage to groundwater increased about 1.5 times, from 2.0 to 5.0 Tg N year?1, in China. Despite that the contribution of cropland to the total amount of reactive N leakage to groundwater was reduced from 50 to 40% during the past three decades, cropland still was the single largest source, while the contribution from landfill rapidly increased from 10 to 34%. High reactive N leakage mainly occurred in relatively developed agricultural or urbanized regions with a large population. The amount of reactive N leakage to groundwater was mainly driven by anthropogenic factors (population, gross domestic product, urbanization rate and land use type). We constructed a high resolution map of reactive N source appointment and this could be the basis for future modeling of groundwater nitrate dynamics and for policy development on mitigation of groundwater contamination.  相似文献   

14.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).  相似文献   

15.
A new methodology is proposed to estimate the strength of the South Atlantic Anticyclone (SAA), using the gridded sea level pressure (SLP) of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data. The top quartile (1017.3 hPa) of the SLP data was found a reasonable criterion to delimit the SAA area. Consequently, we defined the SAA area as the quadrangle containing 80% of the observations with pressure >1017.3 hPa. In this quadrangle, an area weighted pressure gradient (AWPG) was computed for the whole area and for the north–south and west–east halves. When compared with maximum pressure, the AWPG showed a better correlation with the significant wave height (SWH) and wind speed (WS) derived from altimetry. The mean value of the AWPG was 8 × 10−4 Pa/m, with representative values of 9.1 × 10−4 Pa/m and 7.4 × 10−4 Pa/m for austral winter and summer, respectively. The phase difference between the monthly AWPG in the north and south sub-quadrangles accounts for the evolution of the spatial pattern of the anticyclone throughout a year. This quantitative approach proved to be a useful estimate of the strength of South Atlantic Anticyclone. Further improvements of this approach are discussed.  相似文献   

16.
In October 7–9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm’s winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm’s area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s−1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s−1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.  相似文献   

17.
The Water vapour Strong Lines at 183 GHz (183-WSL) fast retrieval method retrieves rain rates and classifies precipitation types for applications in nowcasting and weather monitoring. The retrieval scheme consists of two fast algorithms, over land and over ocean, that use the water vapour absorption lines at 183.31 GHz corresponding to the channels 3 (183.31 ± 1 GHz), 4 (183.31 ± 3 GHz) and 5 (183.31 ± 7 GHz) of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and Metop-A satellite series, respectively.The method retrieves rain rates by exploiting the extinction of radiation due to rain drops following four subsequent steps. After ingesting the satellite data stream, the window channels at 89 and 150 GHz are used to compute scattering-based thresholds and the 183-WSLW module for rainfall area discrimination and precipitation type classification as stratiform or convective on the basis of the thresholds calculated for land/mixed and sea surfaces. The thresholds are based on the brightness temperature difference Δwin = TB89 ? TB150 and are different over land (L) and over sea (S): cloud droplets and water vapour (Δwin < 3 K L; Δwin < 0 K S), stratiform rain (3 K < Δwin < 10 K L; 0 K < Δwin < 10 K S), and convective rain (Δwin > 10 K L and S). The thresholds, initially empirically derived from observations, are corroborated by the simulations of the RTTOV radiative transfer model applied to 20000 ECMWF atmospheric profiles at midlatitudes and the use of data from the Nimrod radar network. A snow cover mask and a digital elevation model are used to eliminate false rain area attribution, especially over elevated terrain. A probability of detection logistic function is also applied in the transition region from no-rain to rain adjacent to the clouds to ensure continuity of the rainfall field. Finally, the last step is dedicated to the rain rate retrieval with the modules 183-WSLS (stratiform) and 183WSLC (convective), and the module 183-WSL for total rainfall intensity derivation.A comparison with rainfall retrievals from the Goddard Profiling (GPROF) TRMM 2A12 algorithm is done with good results on a stratiform and hurricane case studies. A comparison is also conducted with the MSG-based Precipitation Index (PI) and the Scattering Index (SI) for a convective-stratiform event showing good agreement with the 183-WSLC retrieval. A complete validation of the product is the subject of Part II of the paper.  相似文献   

18.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

19.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

20.
The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the central-north Alboran Sea (W-Mediterranean) demonstrates an overall conservative temperature range of only 0.05 °C, a typical mean buoyancy period as large as 3 h and a 1 Hz-profile-vertically-averaged turbulence dissipation rate maximum of only 10−8 m2 s−3. Nonetheless, this ‘boundary layer’ varies in height between <6 and >104 m above the bottom and is thus not homogeneous throughout; the temperature variations are seldom quiescent and are generally turbulent in appearance, well exceeding noise levels. The turbulence character is associated with small-scale internal waves; examples are found of both shear- and convection-driven turbulence; particular association, although not phase-locked, is found between turbulence variations and tidal rather than with inertial motions; the mean buoyancy frequency of a few times the inertial frequency implies the importance of ‘slantwise convection’ in the direction of the earth rotational vector rather than in the direction of gravity. Such convection is observed both in near-homogeneous and weakly stratified form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号