首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Between 2 and 3 km depth, North Pacific deep waters contain a plume of water with high silicic acid concentrations. The plume extends outward from Cascadia Basin (the Washington Margin), where waters can contain in excess of 200 μM off the coast of Oregon and Washington. To identify the source of the high Si concentrations in Cascadia Basin, we measured silicic acid and germanium concentrations in deep waters, and their fluxes from sediments using incubated cores. The mean flux of silicic acid into bottom waters is 0.81±0.05 mmol/m2-day, and the Ge/Si ratio of this flux is 0.7±0.1 μmol/mol. A box model, incorporating these results with hydrographic data, indicates that (1) no more than 5% of the silicic acid added to Basin deep waters can have a hydrothermal source (either hot or warm seeps), and (2) the total input of silicic acid to Basin deep waters is 0.06±0.02 Tmol/y. This input is nearly all from remineralized biogenic debris and should contribute about 0.5% of the 14 Tmol/y that are estimated to be necessary to maintain the North Pacific plume.  相似文献   

2.
Total (unfiltered) silver concentrations in higher latitudes of the North Atlantic (52–68°N) are reported for the second Intergovernmental Oceanographic Commission (IOC) Global Investigation of Pollutants in the Marine Environment (GIPME) baseline survey of 1993. These silver concentrations (0.69–7.2 pM) are oceanographically consistent with those (0.24–9.6 pM) previously reported for lower latitudes in the eastern North and South Atlantic (Flegal et al., 1995). However, surface (⩽200 m) water concentrations of silver (0.69–4.6 pM) in the northern North Atlantic waters are, on average, ten-fold larger than those (0.25 pM) considered natural background concentrations in surface waters of the central Atlantic. In contrast, variations in deep far North Atlantic silver concentrations are associated with discrete water masses. Consequently, the cycling of silver in the far North Atlantic appears to be predominantly controlled by external inputs and the advection of distinct water masses, in contrast to the nutrient-like biogeochemical cycling of silver observed in the central Atlantic and Pacific oceans.  相似文献   

3.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   

4.
Iron has been shown to limit phytoplankton growth in high-nutrient low-chlorophyll (HNLC) regions such as the NE subarctic Pacific. We report size-fractionated Fe-uptake rates by the entire plankton community in short (6–8 h) light and dark incubations along an E–W transect from P04 (a coastal ocean station) to OSP (an open-ocean HNLC station) during August–September 1997. Size-fractionated primary productivity and chl a were measured to monitor algal Fe : C uptake ratios and Fe-uptake relative to phytoplankton biomass. The >5.0 μm size-class, which consisted mostly of large diatoms, had the highest Fe-uptake rate at nearshore stations (P04 and P8), but Fe-uptake rates for this size class decreased despite increases in biomass and primary productivity when transecting westwards to HNLC waters. Fe-uptake rates of the small size class (0.2–1.0 μm, including heterotrophic bacteria and autotrophs) were inversely related to the >5.0 μm size-class uptake rates, in that stations with high dissolved Fe (DFe) concentrations had relatively low uptake rates compared to those in the low-Fe offshore region. The 1.0–5.0 μm size-class Fe-uptake rates were low, relatively invariant along the transect, and differed little between light and dark incubations. Dark Fe-uptake rates averaged 10–20% less than those in the light for the >5.0 μm size class. Dark uptake rates however, were higher than light uptake rates for the 0.2–1.0 μm size class at all stations. Fe : C uptake ratios were high for all size classes at P04, but decreased as DFe concentrations decreased offshore. The prokaryote-dominated 0.2–1.0 μm size class had the highest Fe : C uptake ratios at all stations. These data suggest that prokaryotic organisms make an important contribution to biological Fe uptake in this region. Our experiments support the results of previous culture work, suggesting higher Fe : C ratios in coastal phytoplankton compared to open-ocean species, and demonstrate that light can have a large effect on Fe partitioning between size classes in subarctic Pacific HNLC waters.  相似文献   

5.
Studies of nitrogen and phosphorus dynamics in the oligotrophic surface waters of the western North Atlantic Ocean have been constrained because ambient concentrations are typically at or below the detection limits of standard colorometric methods, except during periods of deep vertical mixing. Here we report the application of high-sensitivity analytical methods—determinations of nitrate plus nitrite (N+N) by chemiluminescence and soluble reactive phosphorus (SRP) by the magnesium induced co-precipitation (MAGIC) protocol—to surface waters along a transect from the Sargasso Sea at 26°N through the Gulf Stream at 37°N, including sampling at the JGOFS Bermuda Atlantic Time-series Study (BATS) station. The results were compared with data from the BATS program, and the HOT station in the Pacific Ocean, permitting cross-ecosystem comparisons. Microbial populations were analyzed along the transect, and an attempt was made to interpret their distributions in the context of the measured nutrient concentrations.Surface concentrations of N+N and SRP during the March 1998 transect separated into 3 distinct regions, with the boundaries corresponding roughly to the locations of the BATS station (∼31°N) and the Gulf Stream (∼37°N). Although N+N and SRP co-varied, the [N+N] : [SRP] molar ratios increased systematically from ∼1 to 10 in the southern segment, remained relatively constant at ∼40–50 between 31°N and 37°N, then decreased again systematically to ratios <10 north of the Gulf Stream. Dissolved organic N (DON) and P (DOP) dominated (⩾90%) the total dissolved N (TDN) and P (TDP) pools except in the northern portion of the transect. The [DON] : [DOP] molar ratios were relatively invariant (∼30–60) across the entire transect.Heterotrophic prokaryotes (operationally defined as “bacteria”), Prochlorococcus, Synechococcus, ultra- and nanophytoplankton, cryptophytes, and coccolithophores were enumerated by flow cytometry. The abundance of bacteria was well correlated with the concentration of SRP, and that of the ultra- and nanophytoplankton was well correlated with the concentration of N+N. The only group whose concentration was correlated with temperature was Prochlorococcus, and its abundance was unrelated to the concentrations of nutrients measured at the surface.We combined our transect results with time-series measurements from the BATS site and data from select depth profiles, and contrasted these North Atlantic data sets with time-series of N and P nutrient measurements from a station in the North Pacific subtropical gyre near Hawaii [Hawaii Ocean Time-series (HOT) site]. Two prominent differences are readily observed from this comparison. The [N+N] : [SRP] molar ratios are much less than 16 : 1 during stratified periods in surface waters at the BATS site, as is the case at the HOT site year round. However, following deep winter mixing, this ratio is much higher than 16 : 1 at BATS. Also, SRP concentrations in the upper 100 m at BATS fall in the range 1–10 nM during stratified periods, which is at least one order of magnitude lower than at the HOT site. That two ecosystems with comparable rates of primary and export production would differ so dramatically in their nutrient dynamics is intriguing, and highlights the need for detailed cross ecosystem comparisons.  相似文献   

6.
Mercury concentration and speciation were measured in surface and deep ocean waters of the South and equatorial Atlantic. In the surface waters, total Hg was 2.9±1.7 pM on average, with a significant fraction present as reactive Hg (1.7±1.2 pM). The reactive Hg fraction consisted of elemental Hg (Hg°) as the dominant species (1.2±0.8 pM). Measurements in surface waters also showed that Hg partitioned to the “colloidal” phase (0.33±0.28 pM) and was associated with particulate matter (0.1±0.05 pM). No dimethylmercury (DMHg;<0.01 pM) or monomethylmercury (MMHg; <0.05 pM) was detected in mixed layer samples. The highest DMHg concentrations were found in recently formed deep waters – Antarctic Intermediate Water and Antarctic Bottom Water and in the equatorial sub-thermocline region. Higher concentrations of DMHg coincided with higher values of apparent oxygen utilization, indicative of a link between microbial activity and methylated Hg production. The lowest-deep water DMHg concentrations were found in the core of the North Atlantic Deep Water. Incubation experiments on-board demonstrated that light enhanced the decomposition of DMHg, with MMHg as the major product. In deep waters, Hg° was still an important constituent and is likely formed as a decomposition product from MMHg. These results suggest that methylated Hg production occurs primarily in regions of high biological activity, and that ionic Hg is strongly complexed to organic matter (colloidal material) in open ocean surface waters.  相似文献   

7.
We report dissolved iron (Fed) concentrations measured in the upper 600 m in the central region of the Gulf of California (GC) under spring conditions. Our results showed the complex nature of Fe cycling within the GC. In the northern region of the study area, surface waters were relatively enriched, with Fed concentrations >5.0 nM, which can be partially explained by an atmospheric source. These concentrations are 12 times higher than those found in the adjacent Pacific Ocean. In contrast, Fed depth profiles in the southern region did not show any Fed surface enrichment (concentrations <1.5 nM) because of particle scavenging and higher stratification of the water-column. The most southern station in our area of study was the most stratified and showed an excess Fed and PO4 with respect to NO3, conditions favorable for nitrogen fixation. This station also showed the least negative surface value of N* of all stations. However, despite the adequate levels of Fed and PO4 at that location, the surface temperature (22.6 °C) was probably not high enough for diazotrophs to develop. A slight increase in Fed levels in intermediate waters at the southern region was associated with the oxygen minimum zone. Finally, our results suggest that remineralization of organic matter is probably the major source of Fed in subsurface waters of the GC.  相似文献   

8.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

9.
We examined bacterioplankton biomass and heterotrophic production (BHP) during summer stratification in the northwestern Mediterranean in four successive stratification seasons (June–July of 1993–1996). Values of phytoplankton biomass and primary production were determined simultaneously so that the data sets for autotrophic and heterotrophic microbial plankton could be compared. Three standard stations were set along a transect from Barcelona to the channel between Mallorca and Menorca, representing coastally influenced shelf waters, frontal waters over the slope front, and open sea waters. Conversion factors from 3H-leucine incorporation to BHP were empirically determined and varied between 0.29 and 3.25 kg C mol-1. Bacterial biomass values were among the lowest found in any marine environment. BHP values (between 0.02 and 2.5 μg C L-1 d-1) were larger than those of low nutrient low chlorophyll areas such as the Sargasso Sea and lower than those from high nutrient low chlorophyll areas such as the equatorial Pacific. Growth rates of bacterioplankton were highest at the slope front (0.20 d-1) and lowest at the open sea station (0.04 d-1). Phytoplankton growth rates were similar at the three stations (∼0.50 d-1). Integrated values of bacterioplankton biomass, BHP and bacterial growth rates did not show significant differences among years, but differences between the three stations were clearly significant. Phytoplankton biomass, primary production, and phytoplankton growth rates did not show significant differences either with year or with station. As a consequence the bacterioplankton to phytoplankton biomass (BB/BPHY) and production (BHP/PP) ratios varied from the coastal to the open sea stations. The BB/BPHY ratio was 0.98 at the coast and ∼0.70 at the other two stations. These ratios are similar to those found in other oligotrophic marine environments. The BHP/PP ratio was 0.83 at the coast, 0.36 at the slope and 0.09 at the open sea station. The last value is also similar to values found in other oligotrophic marine environments. Vertical distribution of these ratios was also examined.The comparison of microbial parameters at the three stations indicates a different kind of relationship between bacterioplankton and phytoplankton in oligotrophic open sea waters and in coastal, nutrient-richer waters. According to such parameters and to the values of the BB/BPHY and BHP/PP ratios, open waters in the northwestern Mediterranean (despite their relatively short distance from the shore) were intermediate between the extremely oligotrophic waters of the eastern Mediterranean or the Sargasso Sea and the more productive waters of the equatorial Pacific.  相似文献   

10.
The redox speciation of dissolved iron in seawater was evaluated at 121 locations in the Pacific Ocean at depths of 15-1000 m, using the method of luminol chemiluminescence. The results indicate that reduced iron, Fe(II), is ubiquitous in surface seawater with a relatively consistent pattern of occurrence. Surface maxima were present in most profiles, with median concentrations of 25-30 pM representing 12-14% of the total dissolved iron. Concentrations decreased monotonically with depth to<12 pM within the upper euphotic zone. This pattern was observed during both day and nighttime sampling events, which suggests that non-photochemical production mechanisms can produce photochemical-like signatures. Further, if theoretical rates of Fe(II) oxidation are applicable to the open ocean, then the employed sampling methods precluded assessment of photochemically-produced Fe(II), regardless of ambient light conditions. For this and other reasons, the concentrations reported here for the upper water column likely represent lower limits of labile iron concentration, and suggest that dissolved iron may be more available for uptake than previously believed. Deeper in the water column, Fe(II) was also frequently detected, though it constituted a small fraction of the total dissolved iron. Possible source mechanisms at these depths include thermal (dark) reduction of Fe(III) organic complexes or remineralization of sinking biogenic particles containing Fe(II). In the northern Philippine Sea between the Japanese coast and the Izu-Bonin volcanic arc system, Fe(II) concentrations were found to be atypically high, possibly because of high atmospheric dust deposition near the surface and transport of sediment-derived iron at depth.  相似文献   

11.
The concentration of dissolved and particulate Re have been measured in the Narmada, Tapi and the Mandovi estuaries in the Arabian Sea and the Hooghly estuary in the Bay of Bengal. Re concentration in water and particulate matter of these estuaries is highly variable. Re in river waters analysed varies from 1 to 41 pmol/kg, the lowest in the Mandovi and the highest in the Mahi river. Re concentrations in the rivers analysed except in the Mandovi river are higher than the average global riverine Re concentration of 2.1 pmol/kg. Based on this study and the available data, the contemporary global annual flux of dissolved riverine Re is estimated to be ~ 350 × 103 mol with an average concentration of ~ 9.2 pmol/kg, much higher than the earlier estimates. Residence time of Re in the oceans based on this estimate is 175,000 years, ~ 4 times lower compared to earlier estimates. Re behaves conservatively in all the estuaries studied. Re concentrations of seawater in the Bay of Bengal and in the Arabian Sea, estimated from the data of the Hooghly and the Mandovi estuaries respectively are ~ 40 pmol/kg, similar to the open ocean Re values of the Arabian Sea measured in this study and the values reported for in other oceanic regions. However, the dissolved Re in the Gulf of Cambay is 2 to 5 times higher, consistent with the high Re measured in the Mahi estuary and in the coastal waters of the Gulf of Cambay. The source of high Re in the Gulf of Cambay seems to be anthropogenic, measurements of Re in rivers and industrial waste waters draining into the Gulf supply amount to ~ 2300 mol of Re annually. This anthropogenic supply coupled with high residence time of water in the Gulf contribute to its high Re. Re concentration in suspended sediments of the Narmada estuary varies from 1 to 2 pmol/g, and does not show any discernible trend with salinity.The contemporary global riverine Re supply to the oceans estimated in this study is ~ 2–4 times higher compared to its removal in the reducing (anoxic/suboxic) sediments, indicating non-steady state of Re in the ocean. High dissolved riverine Re flux coupled with high Re content in the Gulf of Cambay highlights the need of a detailed study of Re in the various global rivers and in oceans including coastal regions and semi enclosed basins of the world to understand its behaviour in various reservoirs and to constrain the residence time of Re in the ocean.  相似文献   

12.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

13.
The chemical speciation of iron was determined in the Southern Ocean along a transect from 48 to 70°S at 20°E. Dissolved iron concentrations were low at 0.1–0.6 nM, with average concentrations of 0.25±0.13 nM. Organic iron complexing ligands were found to occur in excess of the dissolved iron concentration at 0.72±0.23 nM (equivalent to an excess of 0.5 nM), with a complex stability of log KFeL′=22.1±0.5 (on the basis of Fe3+ and L′). Ligand concentrations were higher in the upper water column (top 200 m) suggesting in situ production by microorganisms, and less at the surface consistent with photochemical breakdown. Our data are consistent with the presence of stable organic iron-complexing ligands in deep global ocean waters at a background level of ∼0.7 nM. It has been suggested that this might help stabilise iron at levels of ∼0.7 nM in deep ocean waters. However, much lower iron concentrations in the waters of the Southern Ocean suggest that these ligands do not prevent the removal of iron (by scavenging or biological uptake) to well below the concentration of these ligands. Scavenging reactions are probably inhibited by such ligand competition, so it is likely that biological uptake is the chief cause for the further removal of iron to these low levels in waters that suffer from very low iron inputs.  相似文献   

14.
Cu speciation was characterized at three stations in the sub arctic NW Pacific and Bering Sea using cathodic stripping voltammetry with the competing ligands benzoylacetone and salicylaldoxime. A single ligand model was fit to the titration data, yielding concentrations throughout the water column of ∼3–4 nM, and conditional stability constants ranging from 1012.7 to 1014.1, this range being partly due to the choice of competing ligand. Free Cu2+ in surface waters was 2–4×10−14 M, in close agreement with values reported by previous workers in the NE Pacific using anodic stripping voltammetry (ASV). However, those results showed that complexation by strong organic ligands becomes unimportant below 200–300 m, while our data indicated Cu is strongly complexed to depths as great as 3000 m. Free Cu2+ concentrations in surface waters reported here and in previous work are close to the threshold value where Cu can limit the acquisition of Fe by phytoplankton.  相似文献   

15.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

16.
Seven years (2001–2008) of dissolved organic carbon (DOC) vertical profiles were examined in order to assess the main processes determining DOC concentration and distribution in the meso- and bathypelagic layers of the Mediterranean Sea. As expected, DOC showed high and highly variable concentrations in the surface layer of 57–68 μM (average values between 0 and 100 m), with a decrease to 44–53 μM between 200 and 500 m. Deep DOC distribution was strongly affected by deep-water formation, with a significant increase to values of 76 μM in recently ventilated deep waters, and low concentrations, comparable to those observed in the open oceanic waters (34–45 μM), where the oldest, deep waters occurred. In winter 2004/2005 a deep-water formation event was observed and the consequent DOC export at depth was estimated to range between 0.76–3.02 Tg C month–1. In the intermediate layer, the main path of the Levantine Intermediate Water (LIW) was followed in order to estimate the DOC consumption rate in its core. Multiple regression between DOC, apparent oxygen utilization (AOU), and salinity indicated that 38% of the oxygen consumption was related to DOC mineralization when the effect of mixing was removed. In deep waters of the southern Adriatic Sea a DOC decrease of 6 μM, together with an AOU increase of 9 μM, was observed between the end of January 2008 and the end of June 2008 (5 months). These data indicate a rate of microbial utilization of DOC of about 1.2 μM C month−1, with 92% of the oxygen consumption due to DOC mineralization. These values are surprisingly high for the deep sea and represent a peculiarity of the Mediterranean Sea.  相似文献   

17.
《Marine Chemistry》2006,98(2-4):109-120
We investigated interference effects on the analysis of silver in estuarine and oceanic waters using on-line high resolution inductively coupled plasma mass spectrometry (ICP-MS). A mini-column packed with a strong anion exchange resin (Dowex 1-X8) was used in a flow-injection system to separate and concentrate silver from the saline samples prior to on-line determination by ICP-MS. A series of analyses showed the concentrations of silver measured in San Francisco Bay estuary and the North Pacific that had been acidified (pH < 2) and stored for periods of 1–2 years were 10–70% lower than those measured in aliquots of those samples after ultraviolet (UV) irradiation. Additional silver released after UV irradiation of the estuarine waters, but not the ocean waters, was positively correlated (r = 0.77, simple linear correlation) with chlorophyll-a concentrations, but not with dissolved organic carbon (DOC) concentrations. Spatial distributions of chlorophyll-a and UV-released silver also exhibited similar patterns along a salinity gradient in the San Francisco Bay estuary, suggesting an in situ biogenic source of the interferent for the silver measurements.  相似文献   

18.
We determined the distributions and fluxes of methyl chloride and methyl bromide in the East China Sea (ECS) and the Southern Yellow Sea (SYS) in November 2007. Methyl chloride and methyl bromide concentrations in the surface waters ranged from 47.1 to 163 pmol L?1 and from 0.70 to 9.82 pmol L? 1, with average values of 87.6 and 2.97 pmol L? 1, respectively. The distributions of the two methyl halides were clearly influenced by the Yangtze (Changjiang) River effluent and Kuroshio water, with high concentrations appearing in the coastal zone and low values occurring in the open waters. A positive linear correlation was observed between methyl chloride and methyl bromide concentration anomalies in the surface waters, suggesting that they may share some origins in this coastal area. However, no correlation was found between the two methyl halide concentration anomalies and chlorophyll a in the surface waters. The vertical profiles of the two methyl halides were characterized by the maxima in the upper mixed layer. Both gases were generally supersaturated in the surface seawater, with mean sea-to-air fluxes of methyl chloride and methyl bromide of 391 and 20.0 nmol m?2 d? 1, respectively.  相似文献   

19.
One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. In estuaries, CDOM concentrations vary due to changes in salinity gradients, inflows of industrial and domestic effluents, and the production of new dissolved organic matter from marine biologic activity. CDOM absorption data have been collected from a variety of waters. However, there are a limited number of measurements along the US east coast and a general lack of data from New England waters.This study characterized the temporal and spatial variability of CDOM absorption over an annual cycle in Narragansett Bay and Block Island Sound (Rhode Island). Results suggested that, in Narragansett Bay, the magnitude of CDOM absorption is related to the seasonal variability of freshwater input from surrounding watersheds and new CDOM production from in situ biologic activity. The data show that the average CDOM absorption coefficient at 412 nm was 0·45 m−1 and the average spectral slope was 0·020 nm−1.  相似文献   

20.
We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L−1 h−1 in the top 20 m, 8–28 nmol peptide L−1 h−1 between 100 and 300 m (O2-depleted zone), and 14–19 nmol peptide L−1 h−1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9–26, 3–17, and 6 nmol L−1 h−1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号