首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Study of the upper loess strata within the profile of surface soils highlighted the role of pedogenesis in the formation of characteristic features of loess. Loess-paleosol sequences within the study area are influenced by their position in paleocryogenic microrelief. Clear evidence of sequential loess sedimentation, accompanied by slope processes and pedogenesis, is present in soil profiles within former thermokarst depressions. Different stages of loess sedimentation are marked by cryomorphic features, solifluction stripes and buried humus horizons. The balance between the rate of sedimentation, intensity of slope processes and pedogenesis changed within the upper 3 m of loess strata. Corresponding loess strata in inter-depression areas were also formed by sequential accumulation of aeolian dust, gradually altered by initial pedogenesis that left weakly developed soil profiles without clear horizonation. Pedogenesis resulted in diverse complexes of secondary carbonates, loose soil fabric and microfabric with abundant pores of biogenic and cryogenic nature, as well as other features, characteristic of soils of cold arid environments. The uniformity of these features throughout the upper loess strata confirms the synlithogenic nature of pedogenesis that accompanied loess accumulation.  相似文献   

2.
Understanding the geomorphic history of eolian basins is important in interpreting the archaeological record and human responses to past environments. One hundred forty soil profiles were excavated and described in southern New Mexico and West Texas. Seven major late Quaternary stratigraphic units were found: La Mesa, eolian Jornada (I, II), eolian Isaacks' Ranch, eolian Organ (I, II, and III), Historical Blowsand, and the playa deposits of Petts Tank and Lake Tank. Each unit represents a period of landscape instability, eolian erosion, and concurrent deposition, followed by landscape stability and soil formation. Eolian erosion can form local surficial lag deposits if materials larger than the competence of the wind are present. However, erosional processes alone cannot explain the presence of older clasts at the surface with intact, younger deposits underneath. We propose a combination of processes: deflation in eolian windows, followed by lateral movement of clasts over areas that have not been deflated. The effects of these processes on artifact stratigraphy and archaeological interpretations could be significant. © 2002 Wiley Periodicals, Inc.  相似文献   

3.
Various lines of evidence support conflicting interpretations of the timing, abruptness, and nature of climate change in the Great Plains during the Pleistocene–Holocene transition. Loess deposits and paleosols on both the central and northern Great Plains provide a valuable record that can help address these issues. A synthesis of new and previously reported optical and radiocarbon ages indicates that the Brady Soil, which marks the boundary between late Pleistocene Peoria Loess and Holocene Bignell Loess, began forming after a reduction in the rate of Peoria Loess accumulation that most likely occurred between 13.5 and 15 cal ka. Brady Soil formation spanned all or part of the Bølling-Allerød episode (approximately 14.7–12.9 cal ka) and all of the Younger Dryas episode (12.9–11.5 cal ka) and extended at least 1000 years beyond the end of the Younger Dryas. The Brady Soil was buried by Bignell Loess sedimentation beginning around 10.5–9 cal ka, and continuing episodically through the Holocene. Evidence for a brief increase in loess influx during the Younger Dryas is noteworthy but very limited. Most late Quaternary loess accumulation in the central Great Plains was nonglacigenic and was under relatively direct climatic control. Thus, Brady Soil formation records climatic conditions that minimized eolian activity and allowed effective pedogenesis, probably through relatively high effective moisture.Optical dating of loess in North Dakota supports correlation of the Leonard Paleosol on the northern Great Plains with the Brady Soil. Thick loess in North Dakota was primarily derived from the Missouri River floodplain; thus, its stratigraphy may in part reflect glacial influence on the Missouri River. Nonetheless, the persistence of minimal loess accumulation and soil formation until 10 cal ka at our North Dakota study site is best explained by a prolonged interval of high effective moisture correlative with the conditions that favored Brady Soil formation. Burial of both the Brady Soil and the Leonard Paleosol by renewed loess influx probably represents eolian system response that occurred when gradual change toward a drier climate eventually crossed the threshold for eolian activity. Overall, the loess–paleosol sequences of the central and northern Great Plains record a broad peak of high effective moisture across the late Pleistocene to Holocene boundary, rather than well-defined climatic episodes corresponding to the Bølling-Allerød and Younger Dryas episodes in the North Atlantic region.  相似文献   

4.
The emplacement of calcite-filled veins perpendicular to the Dead Sea Fault Zone in northern Israel reflects strain partitioning during transpression. We present structural, geochemical, and U–Th geochronological data that constrain the mechanism, conditions and timing of vein formation. Vein walls are strongly brecciated and commonly cemented with coarsely crystalline calcite, whereas calcite-filled veins are composed of wall-parallel bands of calcite crystals. Elongated blocky and fibrous calcite crystals grew perpendicular to the vein walls and are characterised by a truncate sealing-hiatus morphology, indicating episodes of partial or complete sealing of the fractures during calcite precipitation. Stable isotope and rare-earth element and yttrium (REY) analyses indicate that calcite-filled veins precipitated by karst processes, involving meteoric water and limited fluid-rock interactions. U–Th dating results show a prolonged history of vein growth. While some veins initiated prior to 500 ka, the majority of the veins were active between 358 and 17 ka. Age constraints on vein activity correspond to an ∼E–W regional shortening phase in this sector of the Dead Sea Fault Zone, associated with an increased component of convergence during the late-Pleistocene.  相似文献   

5.
New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field’s history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ∼15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ∼13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ∼8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ∼5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ∼2000 and 1500 yr, followed by a brief (∼500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ∼700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (∼350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene.  相似文献   

6.
Pleistocene aeolian sands and alluvial deposits can frequently be traced along the Mediterranean coast. Such deposits also exist along the eastern Adriatic coast and the nearby islands. Four stratigraphical sections of these deposits were studied on the Island of Hvar with the purpose of establishing a chronological framework of the aeolian–alluvial depositional system, using luminescence dating and magnetic susceptibility stratigraphy. Luminescence dating was applied on coarse‐grained feldspar and quartz grains separated from the sands. Both quartz optically stimulated luminescence (OSL) and feldspar post‐IR infrared stimulated luminescence (pIRIR) age estimates are in good agreement, with values ranging between 167±24 to 120±12 ka (OSL) and 179±18 to 131±18 ka (pIRIR measured at 290 °C) after a fading correction for the pIRIR signal. The results can be clearly correlated to around the end of oxygen isotope stage (OIS) 6 and the beginning of OSI 5, indicating that the aeolian accumulation of sands was a result of the Penultimate Glacial and climate fluctuations at the beginning of the Last Interglacial. Variations in magnetic susceptibility (MS) data can be interpreted alongside these dating results; several stronger peaks detected at the very end of the Penultimate Glacial and the initial stage of the Last Interglacial cycle most probably indicates more intensive pedogenesis resulting from a more favourable climate, probably because of climate changes. Breccias related to major bounding surfaces in association with evidence of soil formation and bioturbation could be the result of more favourable climate conditions and changes during the transition from OIS 6 to OIS 5 (Penultimate Glacial–Last Interglacial). These results are in agreement with similar data from the wider Mediterranean area.  相似文献   

7.
Chinese loess deposits are generally considered to be the product of dust storms and dust falls from the central Asia arid zones that were transported across China by the northwesterly continental monsoon. In contrast, the Zhengzhou Loess found southeast of the Loess Plateau, adjacent to the floodplain of the Yellow River, records a different eolian regime and dust source. The Zhengzhou Loess was investigated by field observations, measurements of magnetic susceptibility, particle-size distribution, loss-on-ignition, CaCO3 and chemical contents. Both field observations and the laboratory results indicate that, during the last glacial, the Zhengzhou Loess was supplied by two different eolian regimes and dust sources, one was from the fresh flood deposits of the Yellow River driven by the northeast winds from the low-lying floodplain, and the other was from the dust storms and dust falls that traveled across the Loess Plateau driven by the northwesterly continental monsoon from the central Asian arid lands. The early Holocene, 11,500–8500 a BP, was a transition during the change in eolian regime and dust source because of the weakened northwesterly monsoon along with the global climatic amelioration. Following the retreat of the northwesterly monsoon from the onset of the mid-Holocene Climatic Optimum at 8500 a BP, dust supply from the drifting sand zone on the Yellow River floodplain became dominant because of the intensified strength of the northeast winds from the Bohai Sea. From 3100 a BP onwards, climatic aridity and extensive human disturbance have resulted in intensive eolian processes causing the incursion of the drifting sand into the Zhengzhou Loess zone. These results show that loess accumulation is more complex than traditionally assumed. The origin of loess deposits elsewhere outside the Loess Plateau may be related to dust sources derived from alluvial sediments of major river systems.  相似文献   

8.
《Quaternary Science Reviews》2007,26(17-18):2265-2280
Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13–11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a “glacial” origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial–interglacial cycle of the Quaternary.  相似文献   

9.
Perennially frozen loess deposits in the Klondike goldfields include paleosols formed in full-glacial environments, correlated by Alaskan distal tephra with Marine Isotope Stages (MIS) 2 and 4. Patterns of organic and inorganic carbon and clay distribution, microstructures, and profile morphologies indicate that soil formation occurred in a base-rich environment in which organic matter accreted predominantly as root detritus. At sites approximately 20 km apart, the expression of cryoturbation and ice wedge development decreases in strength upward in loess-paleosol sequences correlated with MIS 4, suggesting increasing aridity. Configurations of cryoturbation features and ice-wedge thaw unconformities, the presence of numerous ground squirrel burrows, and an absence of peat accumulation suggest that these substrates were predominantly well-drained, with active layers of equal or greater thickness than in modern soils on similar sites in the west-central Yukon. Some characteristics of these paleosols are similar to those of modern steppe and tundra soils, consistent with plant macrofossil evidence for local ecological diversity during full-glacial conditions in eastern Beringia.  相似文献   

10.
The Carboniferous carbonates of the Um Bogma Formation of the west-central Sinai include two rock successions. The lower succesion consists of karstic carbonates, intrakarstic products, weathering varieties, manganese deposits, and soil cover. The lower karstic rocks and the associated soil cover are preserved under a rhythmic alternation of dolostone and shale forming the upper rock succession of the Um Bogma Formation. The all over congruent relations between the manganese deposits and the fossilized karst profile, karst products, and the associated pedogenesis demonstrate the role of weathering in the accumulation of these deposits during Carboniferous karstification. It is clear that the manganese oxides were deposited during the mature stage of Carboniferous karstification, i.e., during the soil formation, preceeding initial diagenetic change of the karstic rocks and final deposition of the related late-diagenetic caliche cement. The geochemical behavior of Mn during the karstification and the microbiological processes involved in pedogenesis played an essential role in the concentration of the manganese ore in the subsoil horizon of the paleokarst profile. The Um Bogma Formation has been subjected to another episode of karstification during the Quaternary and resulted in lowering of the landforms of the Carboniferous carbonates and destruction of the Carboniferous karst and the associated manganese deposits in some localities.  相似文献   

11.
The regolith studied here is located at the defunct Areachap mine and the newly discovered Kantienpan Cu–Zn volcanic-hosted massive sulfide (VHMS) deposit, located in the Areachap Group of the eastern part of Mesoproterozoic Namaqua Metamorphic Province. This area is highly prospective for further VHMS discoveries. Paleo and recent weathering of the upper most parts of massive sulfide deposits led to the formation of a gossan zone. Due to semi-arid climatic conditions during the late Cretaceous, affecting the African Land surface, the lowermost units of the Kalahari Group and the underlying floor rocks were calcretized. An approximately 6 m thick calcrete layer formed above the gossan zone and this was later covered by eolian Kalahari sand. Samples were collected from the eolian sand cover in the study areas to determine the best analytical method that would enable recognition of the concealed ore deposits and detect the widest secondary dispersion halo.Mobile metal ions from the finest fraction of the eolian sand samples (< 75 μm) were extracted with a NH4EDTA (EDTA) solution. The solution was analysed for Cu, Zn, Pb and Mn by inductively coupled plasma mass spectrometry (ICP-MS). The same grainsize fraction of the original samples was also analysed for comparison purposes by means of X-ray fluorescence (XRF).Results indicate that the ore zone in both areas may be recognized by both partial and total analyses of the eolian sand samples collected, although the calcrete layer, below the sand cover, acts as a partial geochemical barrier. The recognition of the ore zone depends on the regolith forming processes and the thickness of the eolian sand cover. In the Areachap area, with a relatively thick sand cover (in excess of 1 m) above the calcrete layer, the detectable geochemical halo is related to the distribution of the mobile metal ions, and partial extraction (EDTA solution) results define a larger dispersion halo than that, that could be detected by total analysis (XRF). Whereas, in the Kantienpan area with a very thin sand cover (< 50 cm) dispersion appears to be related more to the secondary redistribution of gossaniferous clasts released by recent weathering out of the calcrete, than to dispersion of mobile metal ions on the surface of sand particles. In this area, the XRF results reveal a wider dispersion of the elements of interest.  相似文献   

12.
Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9–1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.  相似文献   

13.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   

14.
《Ore Geology Reviews》2010,37(4):282-292
Accretionary orogens throughout space and time represent extremely fertile settings for the formation and preservation of a wide variety of mineral deposit types. These range from those within active magmatic arcs, either in continental margin or intra-oceanic settings, to those that develop in a variety of arc-flanking environments, such as fore-arcs and back-arcs during deformation and exhumation of the continental margin. Deposit types also include those that form in more distal, far back-arc and foreland basin settings. The metallogenic signature and endowment of individual accretionary orogens are, at a fundamental level, controlled by the nature, composition and age of the sub-continental lithosphere, and a complex interplay between formational processes and preservational forces in an evolving Earth. Some deposit types, such as orogenic gold and volcanic massive sulfide (VMS) deposits, have temporal patterns that mimic the major accretionary and crustal growth events in Earth history, whereas others, such as porphyry Cu–Au–Mo and epithermal Au–Ag deposits, have largely preservational patterns. The presence at c. 3.4 Ga of (rare) orogenic gold deposits, whose formation necessitates some form of subduction–accretion, provides strong evidence that accretionary processes operated then at the margins of continental nuclei, while the widespread distribution of orogenic gold and VMS deposits at c. 2.7–2.6 Ga reflects the global distribution of accretionary orogens by this time.  相似文献   

15.
《Earth》2006,74(1-4):47-62
Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat.The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.  相似文献   

16.
Extremely ice-rich syngenetic permafrost, or yedoma, developed extensively under the cold climate of the Pleistocene in unglaciated regions of Eurasia and North America. In Alaska, yedoma occurs in the Arctic Foothills, the northern part of the Seward Peninsula, and in interior Alaska. A remarkable 33-m-high exposure along the lower Itkillik River in northern Alaska opened an opportunity to study the unmodified yedoma, including stratigraphy, particle-size distribution, soil carbon contents, morphology and quantity of segregated, wedge, and thermokarst-cave ice. The exposed permafrost sequence comprised seven cryostratigraphic units, which formed over a period from > 48,000 to 5,000 14C yr BP, including: 1) active layer; 2) intermediate layer of the upper permafrost; 3–4) two yedoma silt units with different thicknesses of syngenetic ice wedges; 5) buried peat layer; 6) buried intermediate layer beneath the peat; and 7) silt layer with short ice wedges. This exposure is comparable to the well known Mus-Khaya and Duvanny Yar yedoma exposures in Russia. Based on our field observations, literature sources, and interpretation of satellite images and aerial photography, we have developed a preliminary map of yedoma distribution in Alaska.  相似文献   

17.
Loess geochemistry generally reflects paleo-weathering conditions and it can be used to determine the average composition of the upper continental crust (UCC). In this study, major and trace element concentrations were analyzed on loess samples from southwestern Hungary to determine the factors influencing their chemical compositions and to propose new average loess compositions. All studied loess samples had nearly uniform chemical composition, suggesting similar alteration history of these deposits. Chemical Index of Alteration values (58–69) suggested a weak to moderate degree of weathering in a felsic source area. Typical non-steady state weathering conditions were shown on the Al2O3–CaO + Na2O–K2O patterns, indicating active tectonism of the Alpine–Carpathian system during the Pleistocene. Whole-rock element budgets were controlled by heavy minerals derived from a felsic magmatic or reworked sedimentary provenance. Geochemical parameters indicated that dust particles must have been recycled and well homogenized during fluvial and eolian transport processes.  相似文献   

18.
本文提出海岸风沙沉积和海岸风尘沉积是晚更新世期间,由东北季风风系控制的风沙流活动所成。每一期风沙流活动的时限不恒定,其盛行风向前缘随着风力衰减而产生风尘沉积,形成海岸风沙—海岸风尘沉积匹配带。中国海岸带自北而南可划分出四个海岸风沙—海岸风尘沉积匹配区。海岸风沙-海岸风尘沉积均具有多发、高频变化特征,与其中交互更叠的土壤层、冲-洪积层、侵蚀间断面等一起,可成为晚更新世期间气候-环境判别的标志。  相似文献   

19.
西沙群岛石岛根管石特征、成因及地质意义   总被引:2,自引:0,他引:2  
魏喜  贾承造  孟卫工  祝永军 《岩石学报》2008,24(10):2415-2422
西沙群岛石岛由第四纪地层构成,包括4个风成生物砂屑灰岩层和3个化石土壤层,生物砂屑灰岩层和化石土壤层相间分布,在化石土壤层中发育根管石。研究表明,根管石在结构构造、成分和沉积成岩变化方面具有三层分带性。其中,内带由泥晶碳酸盐组成,具有泥晶结构,环形纹层或纤维状构造,是原始植物根系交代和石化的结果; 中带和外带均为细粒砂屑结构,块状或层理构造,砂屑颗粒由珊瑚、珊瑚藻、有孔虫、软体动物、棘皮类等古生物化石和砂屑组成,中带钙质胶结较强,中带、外带及寄主岩石多为过渡关系。根管石的中带和外带是植物根系附近微化学成岩环境和后期差异风化作用的产物。西沙群岛石岛存在3个根管石发育层,标志着三期成土作用和植被化作用的存在,反映了气候条件的重大变化。西沙群岛石岛风成生物砂屑灰岩层和化石土壤层的相间分布特征,及CaO/MgO比值、锶元素和有机质含量变化,记录了4个气候演变和风成沉积演化旋回。  相似文献   

20.
Eolian sediments are common within the middle Gila River Valley, southern Arizona, and reflect variability in eolian and fluvial processes during the late Holocene. This study focuses on deciphering the stratigraphic record of eolian deposition and associated luminescence dating of quartz extracts by single aliquot regeneration (SAR) protocols. Stratigraphic assessment coupled with luminescence ages indicates that there are four broad eolian depositional events at ca. 3145 ± 220 yr, 1950-1360 yr, 800 ± 100 yr, and 690-315 yr. This nascent chronology, correlated with regional archeological evidence and paleoclimate proxy datasets, leads to two general conclusions: (1) loess deposits, transverse-dune formation and sand-sheet deposition in the late Holocene are probably linked to flow variability of the Gila River, though the last two events are concordant with regional megadroughts; and (2) the stability of eolian landforms since the 19th century reflects the lack of eolian sediment supply during a period of fluvial incision, resulting in Entisol formation on dunes. The prime catalyst of eolian activity during the late Holocene is inferred to be sediment supply, driven by climate periodicity and variable flow within the Gila River catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号