首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to picture C geodynamics past and present, theC3He ratios of the relevant reservoirs are considered. Evaluation of publishedC3He ratio in conjunction with new results for MORB glasses worldwide, suggests that this ratio is unfractionated during magma outgassing, a best estimate being 2 × 109.C3He ratios from other volcanic emissions (hot spots and arcs) do not appear significantly different when the subducted component is omitted.This result permits scaling of the CO2 degassing flux to that of3He and yields a value of 2 × 1012 mol/yr which corresponds to a model degassing duration of 3.9 Gyr when recycling to the mantle is disregarded.A bulk Earth chondritic ratio of about 2 × 109 is calculated, very close to the MORB value. On the other hand the reconstructed exospheric (“Rubey inventory”) value of4 ± 1 × 107 is very different from both basaltic and chondritic values.Among the possible interpretations of these results the following two are retained: (1) CO2 was not released in the early age of the Earth because of the reducing conditions prevailing at that time in the mantle. Formation of the core changed this picture and permitted subsequent degassing of CO2. (2) Carbonates need a continental crust of significant size to become stabilized in the exosphere. Therefore accumulation in the exosphere was delayed until crustal formation.Alternatively, a similar degassing behaviour for both He and CO2 requires a massive recycling of carbonates throughout time. This possibility is in contradiction with the present-day maximum recycling rate and the severe imbalance with the observed outgassing flux on one hand and with the small fraction of carbon now present in the exosphere on the other.We conclude that carbon has never been severely degassed. The mantle acts as a buffer for C and most carbon is still retained there, possibly as graphite (or diamond?) or dissolved in minerals.  相似文献   

2.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

3.
In contrast to most other arcs with oceanic plate subduction, the Aegean arc is characterized by continent–continent subduction. Noble gas abundances and isotopic compositions of 45 gas samples have been determined from 6 volcanoes along the arc, 2 islands in the back-arc region and 7 sites in the surrounding areas. The 3He/4He ratios of the samples ranged from 0.027RA to 6.2RA (RA denotes the atmospheric 3He/4He ratio of 1.4×10−6), demonstrating that even the maximum 3He/4He ratio in the region is significantly lower than the maximum ratios of most oceanic subduction systems, which are equal to the MORB value of 8±1 RA. Regional variations in the 3He/4He ratio were observed both along and across the arc. The maximum 3He/4He ratio was obtained from Nisyros volcano located in the eastern end of the arc, and the ratio decreased westward possibly reflecting the difference in potential degree of crustal assimilation or the present magmatic activity in each volcano. Across the volcanic arc, the 3He/4He ratio decreased with an increasing distance from the arc front, reaching a low ratio of 0.063RA in Macedonia, which suggested a major contribution of radiogenic helium derived from the continental crust. At Nisyros, a temporal increase in 3He/4He ratio due to ascending subsurface magma was observed after the seismic crisis of 1995–1998 and mantle neon was possibly detected. The maximum 3He/4He ratio (6.2RA) in the Aegean region, which is significantly lower than the MORB value, is not probably due to crustal assimilation at shallow depth or addition of slab-derived helium to MORB-like mantle wedge, but inherent characteristics of the subcontinental lithospheric mantle (SCLM) beneath the Aegean arc.  相似文献   

4.
3He/4He ratios in lavas erupted during the last 360 years at Mt. Vesuvius are between 2.2 and 2.7 RA (RA = atmospheric ratio of 1.39 × 10−6), and are among the lowest values measured in young volcanic rocks. They are also identical to values measured in summit crater fumaroles sampled during 1987–1991. This agreement indicates that the 3He/4He ratio in the crater fumaroles faithfully tracks the magmatic value. The relatively low and uniform 3He/4He ratio in the lavas reflects either a mantle source enriched in (U + Th)/3He, or a mixture of magmatic and crustal components.  相似文献   

5.
Mantle-derived volatiles in continental crust: the Massif Central of France   总被引:1,自引:0,他引:1  
CO2-rich gases and groundwaters from springs and boreholes originating within the basement of the Massif Central have variable3He/4He ratios with correspondingR/Ra values ranging from 0.8 to 5.5 and 0.3 to 2.8 respectively, indicating the presence of a significant component of mantle helium. Molar concentrations of rare gases in the CO2-rich gases are approximately 5 orders of magnitude greater than in the waters and suggest that a near-surface Henry's Law fractionation has occurred between exsolving CO2 and water.δ13C values of the CO2-rich gases are in the range −4.2 to −6.1‰, i.e. in that range normally attributed to mantle carbon, but which could also represent an average crustal composition and therefore do not discriminate between mantle and crustal sources.C/3He ratios show 4 orders of magnitude variation from 1.4 × 1012 to 5 × 108 and, compared to a mantleC/3He ratio of 109, indicate that either a complex fractionation has occurred between mantle helium and mantle CO2 or more likely that mantle rare gases have been diluted by large quantities of CO2 with an average crustal carbon isotope composition. The regional distribution of3He and C does not show any obvious relationship to age or proximity of volcanic centres or major faults, suggesting that mantle-derived C and He components decoupled from their silicate melt sources at some depth.The results from this area of active fluid circulation suggest that C-isotope data derived from metamorphic terrains should be interpreted with great caution, but that input of some mantle-derived carbon is expected to accompany crustal extension.  相似文献   

6.
The groundwaters of the Great Artesian Basin (Australia) have been previously shown to be accumulating in-situ production helium for groundwaters ages < 50 kyr and an external helium flux equivalent to whole crustal production for groundwater ages > 100 kyr [1,2]. New helium isotope measurements show that the observed in-situ production helium (3He/4He 1.6 × 10−8) is isotopically distinct from the crustal degassing helium flux (3He/4He 6.6 × 10−8). Furthermore, the crustal degassing helium isotope ratio is marginally in excess of the whole crustal production ratio (3He/4He= 3.5 × 10−8) and the production ratio in a variety of continental rock types. This suggests that the upper limit on volatile transport across the mantle-crust boundary beneath the (relatively) stable and “complacent” Australian continent can be characterized by a “conductive-diffusive” helium/heat flux ratio of 2.6 × 1064He atoms mW−1 s−1 which is two orders of magnitude less than the “intrusive-volcanic” ratio of 2.9 × 1084He atoms mW−1 s−1 measured at the Galapagos [16]. These results constrain the transcrustal mantle degassing fluxes of4He and40Ar to be much less than the mid-ocean ridge degassing fluxes; which are much less than the degassing of4He and40Ar from continental crust. Thus, the degassing of the Earth's interior is dominated by magmatic processes but the dominant fluxes of4He and40Ar to the atmosphere must come from the continental crust.  相似文献   

7.
The distribution and isotopic composition of helium has been measured in a suite of well-characterized one-carat diamonds from the Orapa kimberlite, Botswana. Crushing of the diamonds in vacuo indicates that most of the helium is contained by the matrix (generally greater than 90%), rather than by the inclusions. Step-heating experiments, performed on inclusion-free fragments remaining after crushing, indicate that the3He/4He ratio is variablewithin individual diamonds. The fragments, as small as 10 mg, were heated in two timed steps, both at 2000°C. In every case, lower3He/4He ratios are observed in the first graphitization step (0.05–3 × atmospheric), while the last heating step releases helium with systematically higher3He/4He ratio (30–80 × atmospheric). We suggest that this internal isotopic variability is the result of stepwise graphitization: the first heating step initiates graphitization, which nucleates around defects, and the second heating step graphitizes the relatively defect-free regions of the diamond. The3He/4He ratio measured, using the partial graphitization technique, differs by up to a factor of 100 within a single specimen. The inclusion-free fragments release small quantities of helium below 2000°C, which suggests that helium release is obtained only by graphitization. The3He contents of the monocrystalline diamonds are relatively constant (at 3 × 10−13 cm3 STP/gram) and indicate that most of the isotopic variability is due to radiogenic4He. The variations in4He content are either related to zoning of Th and U in the diamonds (i.e., in-situ decay), to zoning of inherited4He, or to implantation of α-particles from a Th and U rich environment (i.e., kimberlite). Because the Orapa diamonds were mined from roughly 40 m depth in the kimberlite, spallation reactions from cosmic ray interactions are not a significant source of3He. However, calculations based on the age of the kimberlite (90 m.y.) and reasonable Th and U abundances suggest that most of the3He in the Orapa diamonds could be produced by6Li(n, α)T in the diamond. Although this may not be true of all diamonds, nuclear reactions in the crust and mantle (including spallation reactions at the surface) can explain many of the high3He/4He ratios previously reported for diamonds.  相似文献   

8.
Oxygen self diffusion rates were determined in quartz samples exchanged with18O-enriched CO2 between 745 and 900°C and various pressures, and the diffusion profiles were measured using an ion microprobe. The activation energy (Q) and preexponential factor (D0) at P(CO2) = P(tot) = 100 bar, for diffusion parallel to the c-axis are 159 ( ± 13) kJ/g atom and 2.10 (+0.75/ −0.55) × 10−8 cm2/s. This rate is approximately 100 times slower than that obtained from hydrothermal experiments and 100 times faster than a previous 1-bar quartz-O2 exchange experiment. The oxygen diffusion rate measured at 0.6 bar, 888°C, and at 900°C in vacuum is in agreement with the previous 1-bar exchange experiments with18O2. The effect of higher CO2 pressures is small. At 900°C, the diffusion rate exchanged with CO2 is = 2.35 × 10−15 cm2/s at 100 bar, 2.24 × 10−15 cm2/s at 3.45 kbar and 8.13 × 10−15 cm2/s at 7.2 kbar.There is probably a diffusing species, other than oxygen, that enhances the oxygen diffusion rate in these quartz-CO2 systems, relative to that occurring at very low pressures or in a vacuum. The effect of this diffusing species, however, is not as strong as that associated with H2O. Preserved oxygen isotope fractionations between coexisting minerals in a slowly cooled, high-grade metamorphic terrane will vary depending upon whether a water-rich phase was present or not. Closure temperatures will be approximately 100°C higher in rocks where no water-rich phase was present during cooling. The measured fractionations between coexisting minerals in metamorphic rocks may potentially be used as a sensor of water presence during retrogression.  相似文献   

9.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

10.
Shallow crustal magma reservoirs beneath the summit of Kilauea Volcano and within its rift zones are linked in such a way that the magma supply to each can be estimated from the rate of ground deformation at the volcano's summit. Our model builds on the well-documented pattern of summit inflation as magma accumulates in a shallow summit reservoir, followed by deflation as magma is discharged to the surface or into the rift zones. Magma supply to the summit reservoir is thus proportional to summit uplift, and supply to the rift zones is proportional to summit subsidence; the average proportionality constant is 0.33 × 106 m3/γrad. This model yields minimum supply estimates because it does not account for magma which escapes detection by moving passively through the summit reservoir or directly into the rift zones.Calculations suggest that magma was supplied to Kilauea during July 1956– April 1983 at a minimum average rate of 7.2 × 106 m3/month. Roughly 35% of the net supply was extruded; the rest remains stored within the volcano's east rift zone (55%) and southwest rift zone (10%). Periods of relatively rapid supply were associated with the large Kapoho eruption in 1960 and the sustained Mauna Ulu eruptions in 1969–1971 and 1972–1974. Bursts of harmonic tremor from the mantle beneath Kilauea were also unusually energetic during 1968–1975, suggesting a close link between Kilauea's deep magma supply region and shallow storage reservoirs. It remains unclear whether pulses in magma supply from depth give rise to corresponding increases in shallow supply, or if instead unloading of a delicately balanced magma transport system during large eruptions or intrusions triggers more rapid ascent from a relatively constant mantle source.  相似文献   

11.
K lauea Volcano, Hawai‘i, currently hosts the longest running SO2 emission-rate data set on the planet, starting with initial surveys done in 1975 by Stoiber and his colleagues. The 17.5-year record of summit emissions, starting in 1979, shows the effects of summit and east rift eruptive processes, which define seven distinctly different periods of SO2 release. Summit emissions jumped nearly 40% with the onset (3 January 1983) of the Pu‘u ‘ ‘ -K paianaha eruption on the east rift zone (ERZ). Summit SO2 emissions from K lauea showed a strong positive correlation with short-period, shallow, caldera events, rather than with long-period seismicity as in more silicious systems. This correlation suggests a maturation process in the summit magma-transport system from 1986 through 1993. During a steady-state throughput-equilibrium interval of the summit magma reservoir, integration of summit-caldera and ERZ SO2 emissions reveals an undegassed volume rate of effusion of 2.1×105 m3/d. This value corroborates the volume-rate determined by geophysical methods, demonstrating that, for K lauea, SO2 emission rates can be used to monitor effusion rate, supporting and supplementing other, more established geophysical methods. For the 17.5 years of continuous emission rate records at K lauea, the volcano has released 9.7×106 t (metric tonnes) of SO2, 1.7×106 t from the summit and 8.0×106 t from the east rift zone. On an annual basis, the average SO2 release from K lauea is 4.6×105 t/y, compared to the global annual volcanic emission rate of 1.2×107 t/y.  相似文献   

12.
Beryllium isotopes (10Be and9Be) have been measured in suspended particles of < 1 mm size collected by mid-water sediment traps deployed in the eastern Pacific at MANOP sites H (6°32′N, 92°50′W, water depth 3600 m) and M (8°50′N, 104°00′W, 3100 m). For comparison, surface sediments from box cores taken from the two sites were also studied. The concentrations of10Be and9Be in sediment-trap particles are about an order of magnitude smaller than those in the bottom sediments which contain about 8 × 109 and 6 × 1016 atoms g−1 of10Be and9Be, respectively. The sediment trap samples collected from 50 m off the bottom showed significant (26–63%) contributions from resuspended bottom sediments. The10Be/9Be ratio in trap samples varies from 3 to 20 × 10−8. The variation may partly result from varied proportion of authigenic/detrital material. The fluxes of both isotopes exhibit a very strong seasonality. The fluxes of10Be into the traps at about 1500 m are estimated as 9 × 105 and 4 × 105 atoms cm−2 a−1 at sites H and M respectively. These values are to be compared with the fluxes into the sediments of 4–5 × 105 atoms cm−2 a−1 at both locations. Good correlations exist between10Be,9Be and27Al indicating that the primary carrier phase(s) for the beryllium isotopes in the water column may be aluminosilicates.  相似文献   

13.
Kaersutites from Kakanui, New Zealand and from three localities in the southwestern United States have been analyzed for rare gases, water and carbon to investigate the volatile signature of the sub-continental mantle. This study does not confirm the high 3He/4He and 21Ne/22Ne ratios reported by Saito et al. [1] for the Kakanui kaersutite. Instead, a 3He/4He ratio of 6 RA and atmospheric 21Ne/22Ne ratios were measured which are consistent with our current knowledge of the earth's mantle. A low 40Ar/36Ar of 320 and more than 10?8 cm3/g of 36Ar confirms the argon results of Saito et al. and indicates that significant quantities of 36Ar reside in this portion of the mantle. Kaersutites from the southwestern United States (Arizona) have a heterogeneous helium isotope signature, ranging from 8.8 RA at San Carlos to 0.46 at Hoover Dam. All D/H ratios for the water in kaersutites (?56‰ to ?78‰) represent typical mantle values with no apparent correlation with 3He/4He. The correlation of increasing carbon content (140–400 ppm) with increasing δ13C (?24.5‰ to ?16.7‰) may reflect differences in the proportions of oxidized and reduced carbon in these samples.  相似文献   

14.
Geothermal gases from submarine and subaerial hot springs in Ensenada, Baja California Norte, Mexico, were sampled for determination of gas chemistry and helium, nitrogen and stable carbon isotope composition. The submarine hot spring gas is primarily nitrogen (56.1% by volume) and methane (43.5% by volume), whereas nearby subaerial hot spring gases are predominantly nitrogen (95–99% by volume). The N2/Ar ratios and σ 15N values of the subaerial hot spring gas indicate that it is atmospheric air, depleted in oxygen and enriched in helium. The submarine hot spring gas is most probably derived from marine sediments of Cretaceous age rich in organic matter. CH4 is a major component of the gas mixture (σ 13C = −44.05%0), with only minor amounts of CO2 (σ13C= −10.46%0). The σ15N of N2 is + 0.2%0 with a very high N2/Ar ratio of 160. The calculated isotopic equilibra tion temperature for CH4---CO2 carbon exchange at depth in the Punta Banda submarine geothermal field is approximately 200°C in agreement with other geothermometry estimates. The 3He/4He ratios of the hot spring gases range from 0.3 to 0.6 times the atmospheric ratio, indicating that helium is predominantly derived from the radioactive decay of U and Th within the continental crust. Thus, not all submarine hydrothermal systems are effective vehicles for mantle degassing of primordial helium.  相似文献   

15.
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   

16.
Fluid inclusion leachates obtained from vug and vein quartz samples from an Archean (3.23 Ga) Fe-oxide hydrothermal deposit in the west-central part of the Barberton greenstone belt, South Africa, were analyzed by ion chromatography for chloride, bromide, and iodide. The deposit, known as the ironstone pods, formed by seafloor hydrothermal activity and fluid discharge. Quartz is dominated by type I liquid-vapor, aqueous inclusions with a bimodal salinity distribution (0–0.25 MCl and 0.9–1.8 MCl). Bulk analytical salinities range from 0.45 to 0.99 MCl represent averages of type I inclusions. Bulk fluid inclusion bromide and iodide concentrations are 1.44–3.32 mM and 0.01–0.12 mM, respectively. For comparison, modern seawater has halogen contents of 590 mM chloride, 0.9 mM bromide, and 0.5 μM total iodine. In the fluids from the ironstone pods, bromide and iodide are enriched relative to chloride, when compared with modern seawater.Approximate BrCl and ICl ratios of 3.2 Ga Barberton seawater are 2.5 × 10−3 and 40 × 10−6, respectively. Dispersion to higher values was caused principally by reaction with organic sediments whose trends are similar to those seen for modern vent fluids at unsedimented and sedimented ridges, relative to modern seawater. These halide ratios are greater than those of modern seawater, suggesting a change in the halide ratios of seawater over geological time. The analytical data are consistent with a model in which marine organic sedimentation has fractionated bromine and iodine out of seawater relative to chloride, thereby causing the halide ratios of seawater to decrease from high early and mid-Archean values towards their present day values.  相似文献   

17.
Helium, volatile fluxes and the development of continental crust   总被引:5,自引:0,他引:5  
Mantle-derived helium has a substantial primordial component and is readily distinguished from radiogenic “crustal” He by its isotopic composition. For some years it has been known to be escaping at mid-ocean ridges and more recently it has been shown to be escaping through the continental lithosphere in tectonically active areas, particularly those undergoing extension or volcanism. The C/3He value observed in ocean ridge basalts and continental gases that contain only mantle He, is close to 109. This is believed to be a typical value for the upper mantle. Other continental gases have ratios that vary widely and are diluted with crustal carbon. The ratio C/4He decreases with time through the production of radiogenic4He, and depends on the C/(U + Th) value. Departures from the average may result from exceptional concentrations of U and Th or from C/He fractionation.There is circumstantial evidence for a steady-state flux of He through the continents that may be estimated from He accumulations in lakes and aquifers. The mantle component of such fluxes is calculated from their3He content. If the mantle component is accompanied by C in the proportion indicated above, and extensional areas make up as little as 10% of the crust at any one time, then about 10% of the present inventory of crustal C would have been added to the crust every Ga by this means. C/K values for the crust and mantle are today very similar, and K may therefore scale as C. K/U and K/Th vary within narrow limits and they may scale with C also.The most plausible means of scavenging He from the mantle is by partial melting: He is expected to enter the first few percent of liquid formed, and the loss of mantle He and C at the surface is associated with the emplacement of basaltic bodies in the lower crust carrying K, U and Th. Some limits are placed on the thickness of basalt added in extensional areas.Mantle-derived CO2 has often been invoked as a means of dehydrating continental crust to produce granulites. However, the amounts of CO2, estimated from mantle He fluxes, entering the crust in those active tectonic areas studied so far appears too small to produce dehydration on a regional scale. The addition of mantle-derived material to the crust in extensional zones is a first-order crustal growth process the importance of which has previously been underestimated.  相似文献   

18.
Results are presented on scubadiving investigations carried out on thermal manifestations in the area of Panarea (Aeolian Islands). The area investigated falls inside a caldera which extends from the main island to the group of islets located to the northeast. The distribution of the gaseous manifestations is regulated by the NE-SW, NW-SE and N-S regional tectonic directrices, through which the more recent basic magma intruded, giving rise to dikes and pillow lavas. fO2-temperature relation of the gases sampled in the investigated area was calculated to be: logfO2 = 11−24,593/T which indicates that a buffering mechanism acted on the gases as they cooled down during their ascent. The high 3He/4He ratio (6 × 10−6) and the δ13C = −3.2%. (PDB), suggest the presence of a magmatic component in the gas feeding the investigated manifestations. The above relations and the almost constant high He/N2 ratio suggest that all the fumaroles are fed by the same deep hot fluids. On the basis of both the chemical characters of the fluids and the geothermo-barometric data, a deep geothermal body, having a temperature of about 240°C, is recognized. Two other shallower thermal aquifers, with a temperature of 170–210°C, are identified. A circulation pattern of the geothermal fluids is also proposed. On the basis of calculations regarding the convective energy released by the geothermal system of Panarea, and the magmatic mass responsible for the positive gravimetric anomaly of the area, it was estimated that the last volcanic activity took place less then 10,000 years ago.  相似文献   

19.
We have used in-situ pumps which filter large volumes of sea water through a 1 μm cartridge prefilter and two MnO2-coated cartridges to obtain information on dissolved and particulate radionuclide distributions in the oceans. Two sites in the northwest Atlantic show subsurface maxima of the fallout radionuclides137Cs,239,240Pu and241Am. Although the processes of scavenging onto sinking particles and release at depth may contribute to the tracer distributions, comparison of predicted and measured water column inventories suggests that at least 35–50% of the Pu and241Am are supplied to the deep water by advection.The depth distributions of the naturally occurring radionuclides232Th,228Th and230Th reflect their sources to the oceans.232Th shows high dissolved concentrations in surface waters, presumably as a result of atmospheric or riverine supply. Activities of232Th decrease with depth to values 0.01 dpm/1000 l.228Th shows high activities in near surface and near bottom water, due to the distribution of its parent,228Ra. Dissolved230Th, produced throughout the water column from234U decay, increases with depth to 3000 m. Values in the deep water (> 3000 m) are nearly constant ( 0.6–0.7 dpm/1000 l), and the distribution of this tracer (and perhaps other long-lived particle-reactive tracers as well) may be affected by the advection inferred from Pu and241Am data.The ratio of particulate to dissolved activity for both230Th and228Th is 0.15–0.20. This similarity precludes the calculation of sorption rate constants using a simple model of reversible sorption equilibrium. Moreover, in mid-depths228Th tends to have a higher particulate/dissolved ratio than230Th, suggesting uptake and release of230Th and228Th by different processes. This could occur if228Th, produced in surface water, were incorporated into biogenic particles formed there and released as those particles dissolved or decomposed during sinking.230Th, produced throughout the water column, may more closely approach a sorption equilibrium at all depths.230Th,241Am and239,240Pu are partitioned onto particles in the sequence Th > Am > Pu with 15% of the230Th on particles compared with 7% for Am and 1% for Pu. Distribution coefficients (Kd) are 1.3–1.6 × 107 for Th, 5–6 × 106 for Am and 7–10 × 105 for Pu. The lower reactivity for Pu is consistent with analyses of Pu oxidation states which show 85% oxidized (V + VI) Pu. However, theKd value for Pu may be an upper limit because Pu, like228Th, may be incorporated into particles in surface waters and released at depth only by destruction of the carrier phase.  相似文献   

20.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号