首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determine seismic strain rate of tectonic earthquakes along the Central America Volcanic Arc. We then compare this result to those obtained from earthquakes related to the convergence of the Cocos and Caribbean plates and to earthquakes in the back-arc region of northern Central America.

The seismic strain-rate tensor for shallow-focus earthquakes along the Central America volcanic arc since 1700, has a compressive eigenvector with a magnitude of 0.7 × 10−8 year−1, and oriented in a 357° azimuth. The extensive eigenvector is oriented in a 86° azimuth, with a magnitude of 0.82 × 10−8 year−1. When only Centroid Moment-tensor solutions (CMT) are considered, the respective eigenvectors are 1.2 × 10−8 year−1 and 1.0 × 10−8 year−1.

The compressive eigenvector from the seismic strain-rate tensor for earthquakes along the Cocos-Caribbean convergent margin is 2.0 × 10−8 year−1, plunging at 25°, and oriented in a 29° azimuth. Its magnitude and direction are similar to those of the compressive eigenvector for earthquakes along the volcanic arc. The extensive eigenvector along the convergent margin, on the other hand, has a large vertical component. The compressive and extensive eigevenvectors are 4.9 × 10−8 year−1 and 4.6 × 10−8 year−1, using only CMTs as the database.

Earthquakes along the grabens of northern Central America yield a seismic strain-rate tensor whose extensive eigenvector has a magnitude of 2.4 × 10−8 year−1, oriented in a 109° azimuth. Magnitude and direction are similar to those of the extensive eigenvector for earthquakes along the volcanic arc. The compressive eigenvector along the grabens is practically vertical.

Similarities in magnitudes and directions for compressive and extensive eigenvectors suggest to us that the strain field along the Central America volcanic arc is the result of compression along the convergent Cocos-Caribbean margin, and extension in the back-arc region, along the grabens of northern Central America. This field is resolved as strike-slip faulting along the arc.  相似文献   


2.
I. Kawasaki  Y. Asai  Y. Tamura 《Tectonophysics》2001,330(3-4):267-283
Along the Japan trench where some Mw8 class interplate earthquakes occurred in the past century such as the 1896 Sanriku tsunami earthquake (M6.8, Mt8.6, 12×1020 N m) and the 1968 Tokachi-oki earthquake (Mw8.2, 28×1020 N m), the Pacific plate is subducting under northeast Japan at a rate of around 8 cm/year. The seismic coupling coefficient in this region has been estimated to be 20–40%. In the past decade, three ultra-slow earthquakes have occurred in the Sanriku-oki region (39°N–42°N): the 1989 Sanriku-oki (Mw7.4), the 1992 Sanriku-oki (Mw6.9), and the 1994 Sanriku-oki (Mw7.7) earthquakes. Integrating their interplate moments released both seismically and aseismically, we have the following conclusions. (1) The sum of the seismic moments of the three ultra-slow earthquakes was (4.8–6.6)×1020 N m, which was 20–35% of the accumulated moment (18.6–23.0)×1020 N m, in the region (39°N–40.6°N, 142°E–144°E) for the 21–26 years since the 1968 Mw8.2 Tokachi-oki earthquake. This is consistent with the previous estimates of the seismic coupling coefficient of 20–40%. On the other hand, the sum of the interplate moments including aseismic faulting is (11–16)×1020 N m, leading to a “seismo-geodetic coupling coefficient” of 50–85%, which is an extension of the seismic coupling coefficient to include slow events. (2) The time constants showed a large range from 1 min (102 s) for the 1968 Tokachi-oki earthquake to 10–20 min (103 s) for the 1896 Sanriku tsunami earthquake, to one day (105 s) for the 1992 Sanriku-oki ultra-slow earthquake, to on the order of one year (107 s) for the 1994 Sanriku-oki ultra-slow earthquakes. (3) Based on the space–time distribution, three “gaps of moment release,” (40.6°N–42°N, 142°E–144°E) 39°N–40°N, 142°E–143°E) and (39°N–40°N, 142°E–144°E), are identified, instead of the gaps of seismicity.  相似文献   

3.
Within three hours of the mainshock rupture of the 26 December 2004 Sumatra-Andaman earthquake, 45 aftershocks occurred that are distributed all along the mega-thrust fault plane and also along the West Andaman fault. Seven of these aftershocks struck sequentially and unilaterally from the mainshock in the south towards north within 2h 9m 50.76s indicating an overall rate of aftershock propagation to the tune of 167 meters/sec. Seismic moment calculated from fault parameters gives a value of 1.2 × 1030 dyne cm. Three separate fault segments are identified from distribution of aftershocks with propagation rates 330, 250 and 85 meters/sec in the southern, central and northern segments. These 7 unilaterally propagating shocks along the mega-thrust are probably not aftershocks of the mainshock rather these are sequentially triggered shocks each rupturing a small segment of the fault. Location of the mainshock and several aftershocks are guided by several lithospheric hinge faults identified previously.  相似文献   

4.
The production rate of 38Ar in meteorites—P(38)—has been determined, as a function of the sample's chemical composition, from 81Kr-Kr exposure ages of four eucrite falls. The cosmogenic 78Kr/83Kr ratio is used to estimate the shielding dependence of P(38).

From the “true” 38Ar exposure ages and the apparent 81Kr-Kr exposure ages of nine Antarctic eucrite finds, terrestrial ages are calculated. They range from about 3 × 105 a (Pecora Escarpment 82502) to very recent falls (Thiel Mountains 82502). Polymict eucrites from the Allan Hills (A78132, A79017 and A81009) have within the limits of error the same exposure age (15.2 × 106 a) and the same terrestrial age (1.1 × 105 a). This is taken as strong evidence that these meteorites are fragments of the same fall. A similar case are the Elephant Moraine polymict eucrites A79005, A79006 and 82600 with an exposure age of 26 × 106 a and a terrestrial age of 1.8 × 105 a. EETA79004 may be different from this group because its exposure age and terrestrial age are 21 × 106 a and 2.5 × 105 a, respectively.

The distribution of terrestrial ages of Allan Hills meteorites is discussed. Meteorites from this blue ice field have two sources: Directly deposited falls and meteorites transported to the Allan Hills inside the moving Antarctic ice sheet. During the surface residence time meteorites decompose due to weathering processes. The weathering “half-life” is about 1.6 × 105 a. From the different age distributions of Allan Hills and Yamato meteorites, it is concluded that meteorite concentrations of different Antarctic ice fields need different explanations.  相似文献   


5.
Microearthquake observations are used to study the local seismicity and seismotectonics in the Precambrian Rapakivi Granite, in the Loviisa area, SE Fi around the nuclear power plant in Loviisa, is limited to a radius of 100 km.

The results from a local microearthquake network in the Loviisa area showed that, during 6 years of measuring there were 29 micro- and ultra-microearth 0.1–1.2) in the area. The events identify active faults in the area.

The estimated value of the peak slip is an important parameter connecting microearthquakes to geodynamical processes. The peak slip gives an approximat and aseismic movement on a certain fault and thus an indication of ongoing tectonic processes. The movements on the active fault may continue for thous

Source parameters were computed for a simple circular source model, giving peak slips less than 0.25 mm, stress drop values less than 2 × 105N/m2 and source radii generally less than 50 m. The earthquakes occurred at depths of less than 5 km.  相似文献   


6.
Dynamic source parameters are estimated from P-wave displacement spectra for 18 local earthquakes (1.2 < ML < 3.7) that occurred in two seismically active regions of Hungary between 1995 and 2004. Although the geological setting of the two areas is quite different, their source parameters cannot be distinguished. The source dimensions range from 200 to 900 m, the seismic moment from 6.3x1011 to 3.48×1014 Nm, the stress drop from 0.13 to 6.86 bar, and the average displacement is less than 1 cm for all events. The scaling relationship between seismic moment and stress drop indicates a decrease in stress drop with decreasing seismic moment. A linear relationship of M w = 0.71 M L + 0.92 is obtained between local magnitude and moment magnitude.  相似文献   

7.
We investigate the use of a ductile material with temperature-sensitive viscosity for thermomechanical modelling of the lithosphere. First, we consider the scaling of mechanical and thermal properties. For a normal field of gravity, the balance of stresses and body forces sets the stress scale, in proportion to the linear dimensions and the densities. The equation of thermal conduction sets the time scale. The activation enthalpy for creep sets the temperature scale; but the thermal expansivity provides an additional constraint on this temperature scale.

Gum rosin appears to be a suitable material for lithospheric modelling. We have measured its flow properties, at various temperatures, in a specially designed rotary viscometer with unusually low machine friction. The rosin is almost Newtonian. Strain rate depends upon stress to the power n, where 1.0 <n < 1.14. The viscosity varies over 5 orders of magnitude, from about 102 Pa s at 80°C, to about 107 Pa s at 40°C. The activation enthalphy is thus about 250 kJ/mol. Measured with a needle probe, the thermal conductivity is 0.113 ± 0.001 W m−1K−1; the thermal diffusivity, (6±3) ×10−7 m2 s−1. Calculated from X-ray profiles, the thermal expansivity is about 3 × 10−4 K−1. These thermal and mechanical properties make gum rosin suitable for thermomechanical models, where linear dimensions scale down by a factor of 106; time, by 1011; viscosity, by 1017; and temperature change, by 101.  相似文献   


8.
Advances in earthquake data acquisition and processing techniques have allowed for improved quantification of source parameters for local Australian earthquakes. Until recently, only hypocentral locations and local magnitudes (ML) had been determined routinely, with little attention given to the inversion of additional source parameters. The present study uses these new source data (e.g. seismic moment, stress drop, source dimensions) to further extend our understanding of seismicity and the continental stress regime of the Australian landmass and its peripheral regions.

Earthquake activity within Australia is typically low, and the proportion of small to large events (i.e. the b value) is also low. It is observed that average stress drops for southeastern Australian earthquakes appear to increase with seismic moment to relatively high levels, up to approximately 10 MPa for ML 5.0 earthquakes. This is thought to be indicative of high compressive crustal stress, coupled with strong rocks and fault asperities. Furthermore, the data indicates that shallow focus earthquakes (shallower than 6 km) appear to produce lower than average stress drops than deeper earthquakes (between 6 and 20 km) with similar moment.

Recurrence estimates were obtained for a discrete seismogenic zone in southeastern Australia. Decreasing b values with increasing focal depth for this zone indicate that larger earthquakes (with high stress drops) tend to occur deeper in the crust. This may offer an explanation for the apparent increase of stress drop with hypocentral depth. Consequently, earthquake hazard estimates that assume a uniform Gutenburg–Richter distribution with depth (i.e. constant b value) may be too conservative and therefore slightly overestimate seismic hazard for surface sites in southeastern Australia.  相似文献   


9.
The tectonic processes taking place along the southern part of the Japan trench are discussed on the basis of the focal mechanism of the 1938 Shioya-Oki event which consists of the five large earthquakes of Ms = 7.4, 7.7, 7.8, 7.7 and 7.1. Detailed analyses of seismic waves and tsunamis are made for each of these earthquakes, and the dislocation parameters are obtained. The total seismic moment amounts to 2.3 · 1028 dyn.cm. The five earthquakes are grouped into either a low-angle thrust type or a nearly vertical normal-fault type. These mechanisms are common with other great earthquakes of the northwestern Pacific belt, and can be explained in terms of the interaction between the oceanic and continental plates. The vertical displacement inferred from the seismic results is in approximate agreement with the precise level data over the period from 1939 and 1897. This agreement suggests that the rate of the strain accumulation at the preseismic time is very small in the epicentral area. Repeated levelings at the postseismic time reveal a large-scale recovery of the coseismic subsidence. The postseismic deformation is one-third to one-half of the coseismic displacement. The time constant of the recovery is estimated to be 5 years or less. This type of deformation may be a manifestation of viscoelasticity of a weak zone underlying the continent. The amount of dislocation, together with the longterm seismicity, suggests a seismic slip rate of about 0.4 cm/year, which is one order of magnitude smaller than that for the adjacent regions. This suggests that a large part of the plate motion is taking place aseismically in this region. The tectonic process now taking place in the southern Japan trench can be considered to represent a stage just prior to a complete detachment of the sinking portion of the oceanic plate.  相似文献   

10.
Based on the tectonic framework of central Japan, including the surrounding submarine areas, the space-time relationship between destructive inland earthquakes of magnitudesM 6.4 or greater and great offshore earthquakes along the Nankai trough was examined. From east to west, four tectonic lines are defined as lines linking active faults: the Itoigawa-Shizuoka tectonic line (ISTL), the Tsurugawan-Isewan tectonic line (TITL), the Hanaore-Kongo fault line (HKFL), and the Arima-Takatsuki tectonic line (ATTL). The TITL divides central Japan into the Chubu and Kinki districts, and probably extends southward to the Nankai trough. The Chubu district is subdivided into four blocks by boundary lines linking NW-SE trending active faults having left-lateral strike slip. In the Kinki district, N-S trending, active reverse, steep-dip faults are dominant in the triangular region north of the Median Tectonic line, between the TITL and HKFL, forming a basin-and-range province.

Starting from 1586 A.D., a seismic space-time sequence of high seismic activity in the Chubu district in which earthquake occurrence migrates from the eastern to western tectonic lines of central Japan was identified. The sequence also revealed that inland earthquakes preceded great offshore earthquakes which occurred along the Nankai trough. It was also found that a destructive earthquake tends to occur on the HKFL within 30 years after the occurrence on the TITL, and that the western Nankai trough generated great earthquakes ofM≥7.0 at intervals ranging from 8 to 49 years after the HKFL earthquakes. If the eastern Nankai trough is coupled with the western Nankai trough, a forthcoming greater earthquake measuringM 8.5 may be expected. Since such great earthquakes are always accompanied by large tsunamis, much attention should be focussed on possible tsunami disasters along the Pacific coast of central Japan.

Based on its tectonic structure, a tectonic model of central Japan is proposed. The seismic space-time sequence, which attempts to explain the cause of the sequential earthquake generation, is also discussed.  相似文献   


11.
Several shales and oils ranging in age from 3 million to 2·7 billion years have been investigated for their hydrocarbon content using gas chromatography and mass spectrometry as primary analytical tools. From the Soudan Shale from Minnesota (2·7 × 109yr) the C18, C19, C20 and C21 isoprenoid-alkanes were obtained. The Antrim shale from Michigan (about 265 × 106 yr) yielded the C16, C18, C19, C20 and C21 isoprenoids, as well as a C16 iso-alkane and the C18 and C19 cyclohexyl n-alkanes. The San Joaquin Oil (30 × 106 yr) and the Abbott Rock Oil (3 × 106 yr) contained the C16, C18, C19, C20 and the C18, C19, C20 and C21 isoprenoids respectively. In addition, a series of iso-alkanes (C16−C18), anteiso-alkanes (C16−C18) and n-alkylcyclohexanes (C16−C19) as well as a C21 isoprenoid were obtained from the Nonesuch Seep Oil (1 × 109 yr). This analysis provides a comprehensive picture of the types of biogenic hydrocarbons found in oils and shales of widely differing ages, and in particular, the finding of isoprenoid alkanes in the Soudan Shale furnishes evidence for life processes at that period of geological time.  相似文献   

12.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   

13.
A moderately sized pure, normal dip-slip earthquake occurred in the Roer Valley Graben (RVG) near Roermond, The Netherlands on 13 April 1992 at 1h 20m UTC. This contribution presents an overview of the locations, fault-plane solutions and magnitudes obtained for the mainshock and the aftershocks by the different scientific groups involved in their analysis. The observed maximum intensity of VII is compared with that of other earthquakes in the region to illustrate the relatively low level of damage caused by the mainshock.
Using SH and Lg waves recorded at seven local and regional broadband stations, we determine a seismic moment of 1.4 × 1017 Nm, a static stress drop of 9.7 MPa and an average displacement of 33 cm over a rupture surface of approximately 11 km2.
The seismotectonics of the region extending from the RVG to the city of Liège including the western part of the Rhenish Massif (WRM) and the eastern part of the Brabant Massif (EBM) is analysed based on the Roermond earthquake studies and data collected since 1985 by the Belgian seismic network. The geographical distribution of focal mechanism reveals four different seismotectonic regimes in this area. From stress tensor inversion we find that 3 coincides with the minimum horizontal stress component in the RVG, the WRM and possibly in the EBM, while in the Liège region 3 is approximately vertical. The minimum horizontal stress component shows a 30° rotation to the north in the WRM and the Liège region and possibly 50° in the EBM when compared with the minimum horizontal stress component in the RVG.  相似文献   

14.
Evaluation of the seismic moment tensor for earthquakes on plate boundary is a standard procedure to determine the relative velocity of plates, which controls the seismic deformation rate predicted from the slip on a single fault. The moment tensor is also decomposed into an isotropic and a deviatoric part to discover the relationship between the average strain rate and the relative velocity between two plates. We utilize this procedure to estimate the rates of deformation in northern Central America where plate boundaries are seismically well defined. Four different tectonic environments are considered for modelling of the plate motions. The deformation rates obtained here compare well with those predicted from the plate motions models and are in good agreement with actual observations. Deformation rates on faults are increasingly being used to estimate earthquake recurrence from information on fault slip rate and more on how we can incorporate our current understanding into seismic hazard analyses.  相似文献   

15.
We present a model of the subducting Cocos slab beneath Central Mexico, that provides an explanation for stresses causing the occurrence of the majority of the intraslab earthquakes which are concentrated in a long flat segment. Based on the recently developed thermal models for the Central Mexico subduction zone, the thermal stresses due to non-uniform temperature contrast in the subducting slab are calculated using a finite element approach. The slab is considered purely elastic but due to high temperature at its bottom the behavior is considered as ductile creep. The calculation results show a  20 km slab core characterized by a tensional state of stress with stresses up to 70 MPa. On the other hand, the top of the slab experiences high compressive thermal stresses up to 110 MPa, depending on the elastic constants used and location along the flat part of the subducting plate. These compressive stresses at the top of the slab are not consistent with the exclusive normal fault intraslab earthquakes, and two different sources of stress are proposed.

The trenchward migration of the Mexican volcanic arc for the last 7 Ma indicates an increase of the slab dip through time. This observation suggests that the gravity torque might exceed the suction torque. Considering the flat slab as an embedded plate subject to an applied clockwise net torque of 0.5 × 1016–1.5 × 1016 N m, the upper half would exhibit tensional stresses of 40–110 MPa that can actually balance the compressive thermally induced stresses.

An alternative stress source might come from the slab pull force caused by the slab positive density anomaly. Based on our density anomaly estimations (75 ± 20 kg/m3), a 350 km slab length, dipping at 20° into the asthenosphere, induces a slab pull force of 1.7 × 1012–4.6 × 1012 N m. This force produces a tensional stress of 41–114 MPa, sufficient to balance the compressive thermal stresses at the top of the flat slab.

The linear superposition of the thermally and torque or slab pull induced stresses shows tensile stresses up to 60–180 MPa inside the flat slab core. Also, our results suggest that the majority of the intraslab earthquakes inside the flat slab are situated where the resultant stresses are larger than 40–80 MPa.

This study provides a reasonable explanation for the existence of exclusively normal fault intraslab earthquakes in the flat slab beneath Central Mexico, and also it shows that thermal stresses due to non-uniform reheating of subducting slabs play a considerable role in the total stress field.  相似文献   


16.
The frequency dependence of the function of the seismic wave attenuation was determined for the first time for southern Sakhalin on the basis of seismic coda of local earthquakes using the model of single scattering. The algorithm of the automated definition of the scalar seismic moments was realized for small earthquake foci. Mass estimates of the scalar seismic moments were obtained as exemplified by the after-shocks of the August 17, 2006, Gornozavodsk earthquake (MW 5.6) and the May–June 2004 Kostromskoe earthquake swarm events, which occurred in South Sakhalin. The dynamic parameters of the earthquake foci were determined from the SH-wave spectra adjusted for absorption and geometrical spreading. The loglinear relationship determined between the seismic moment and the local magnitude is in good agreement with the estimates obtained for other regions and, in a certain sense, does not contradict the average world dependence.  相似文献   

17.
Depth profiles of in situ-produced cosmogenic nuclides, including 10Be (T1/2=1.5×106 years) and 26Al (T1/20.73×106 years), in the upper few meters of the Earth's crust may be used to study surficial processes, quantifying denudation and burial rates and elucidating mechanisms involved in landform evolution and soil formations. In this paper, we discuss the fundamentals of the method and apply it to two lateritic sequences located in African tropical forests.  相似文献   

18.
The central trough of the Bolivian Altiplano is occupied by two wide salt crusts: the salar of Uyuni, which is probably the largest salt pan in the world (10,000 km2) and the salar of Coipasa (2,500 km2). Both crusts are essentially made of porous halite filled with an interstitial brine very rich in Li, K, Mg, B (up to 4.7 g/l Li, 4.3 g/l B, 30 g/l K and 75 g/l Mg). Lithium reserves are the highest known in the world, around 9 × 106 tons. Potassium, magnesium and boron reserves in brines are also important (around 194 × 106 tons K, 8 × 106 tons B and 211 × 106 tons Mg).

The crusts are the remnant of saline Lake Tauca (13,000–10,000 yr BP). Its salinity was estimated approximately at 80 g/l. Its paleochemistry was derived in two ways: (1) by dissolving the present amounts of all chemical components in the former lake volume, and (2) by simulating the evaporation of the major inflows to the basin. The resulting chemical compositions are quite different. The dissolution-derived one is 5 to 50 times less concentrated in Li, K, Mg, B than the evaporation-simulated ones. However all compositions present the same Na and Cl contents. This suggests either a removal of bittern salts or an enrichment of the former lake water in Na and Cl.

The most probable interpretation is that Lake Tauca redissolved a salt crust akin to that existing today. Several older lakes have been detected on the Altiplano. Nevertheless, such an explanation only pushes the problem back. It is likely that the anomaly was transferred from one lake to an other. Three hypotheses may be put forward: (1) bittern seepage through bottom sediments, (2) uptake of the missing components by minerals, and (3) leaching of ancient evaporites from the catchment area at the beginning of the lacustrine history of the basin. The excess halite could have been recycled from lake to lake. This latter process seems to be the most effective to explain the large excess of Na and Cl over the bittern solutes — Li, K, Mg and B. The occurrence of almost pure Na/1bCl saline springs flowing out from a gypsum diapir in the northern Altiplano gives substantial support to this hypothesis.  相似文献   


19.
The average seismic strain rate is estimated for the seismotectonic zone of the northern/central parts of the Gulf of Suez. The principal strain rate tensor and velocity tensor were derived from a combination of earthquake focal mechanisms data and seismic moment of small-sized earthquakes covering a time span of 13 years (1992–2004). A total of 17 focal mechanism solutions have been used in the calculation of the moment tensor summation. The local magnitudes (MLs) of these events range from 2.8 to 4.7. The analysis indicates that the dominant mode of deformation in the central and northern parts of the Gulf of Suez is extension at a rate of 0.008 mm/year in N28°E direction and a small crustal thinning of 0.0034 mm/year. This low level of strain means that this zone experienced a little seismic deformation. There is also a right lateral shear motion along the ESE–WNW direction. This strain pattern is consistent with the predominant NW–SE normal faulting and ESE–WNW dextral transtensive faults in this zone. Comparing the results obtained from both stress and strain tensors, we find that the orientations of the principal axes of both tensors have the same direction with a small difference between them. Both tensors show a predominantly extensional domain. The nearly good correspondence between principal stress and strain orientations in the area suggests that the tectonic strength is relatively uniform for this crustal volume.  相似文献   

20.
The seismicity and the associated seismic hazard in the central part of the Pannonian region is moderate, however the vulnerability is high, as three capital cities are located near the most active seismic zones. In our analysis two seismically active areas, the Central Pannonian and Mur-Mürz zones, have been considered in order to assess the style and rate of crustal deformation using Global Positioning System (GPS) and earthquake data.We processed data of continuous and campaign GPS measurements obtained during the years 1991–2007. Velocities relative to the stable Eurasia have been computed at HGRN, CEGRN and EPN GPS sites in and around the Pannonian basin. Uniform strain rates and relative displacements were calculated for the investigated regions. GPS data confirm the mostly left lateral strike slip character of the Mur-Mürz–Vienna basin fault system and suggest a contraction between the eastward moving Alpine-North Pannonian unit and the Carpathians.The computation of the seismic strain rate was based on the Kostrov summation. The averaged unit norm seismic moment tensor, which describes the characteristic style of deformation, has been obtained from the available focal mechanism solutions, whereas the annual seismic moment release showing the rate of the deformation was estimated using the catalogues of historical and recent earthquakes.Our analysis reveals that in the Central Pannonian zone the geodetic strain rate is significantly larger than the seismic strain rate. Based on the weakness of the lithosphere, the stress magnitudes and the regional features of seismicity, we suggest that the low value of the seismic/geodetic strain rate ratio can be attributed to the aseismic release of the prevailing compressive stress and not to an overdue major earthquake. In the Mur-Mürz zone, although the uncertainty of the seismic/geodetic strain rate ratio is high, the seismic part of the deformation seems to be notably larger than in the case of the Central Pannonian zone. These results reflect the different deformation mechanism, rheology and tectonic style of the investigated zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号