首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  ? C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol?1 K?1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol?1 K?1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).  相似文献   

2.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

3.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   

4.
We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, \(D_{\text{Ni}}^{\text{ol/liq}}\). Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite–Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that \(D_{\text{Ni}}^{\text{ol/liq}}\) for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni–Mg exchange reaction, which yields \(\ln \left( {D_{\text{Ni}}^{\text{molar}} } \right) = \frac{{ -\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{RT} + \frac{{\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{R} - \ln \left( {\frac{{X_{\text{MgO}}^{\text{liq}} }}{{X_{{{\text{MgSi}}_{ 0. 5} {\text{O}}_{ 2} }}^{\text{ol}} }}} \right).\) Each subset of constant composition experiments displays roughly the same temperature dependence of \(D_{\text{Ni}}^{\text{ol/liq}}\) (i.e.,\(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\)) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 3641 ± 396 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 1.597 ± 0.229. Adding data from the literature yields \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 4505 ± 196 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for \(D_{\text{Ni}}^{\text{ol/liq}}\) applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent \(D_{\text{Ni}}^{\text{ol/liq}} ,\) and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.  相似文献   

5.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   

6.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

7.
Sulfoselenides [Ag2(S,Se)] and Se-bearing polybasite have been discovered at the Kongsberg silver district. The selenium-bearing minerals occur in two samples from the northern part of the district, forming either single or polyphase inclusions together with chalcopyrite within native silver. The Ag-sulfoselenides show large chemical variations, covering nearly the complete compositional range between acanthite (Ag2S) and naumannite (Ag2Se). For the data presented here, there is no local maximum at the composition Ag4SSe attributed to the distinct phase called aguilarite, suggesting that this composition can be considered as one of many possible along the monoclinic Ag2S–Ag2S0.4Se0.6 solid solution series rather than a specific mineral phase. We present a model explaining the variations in the Se-content of Ag2(S,Se) as a result of gradual de-sulfidization of the rock under oxidizing conditions. During this process, sulfur from the Ag2S-component of Ag2(S,Se) oxidized and dissolved in the fluid phase as SO42?, resulting in the formation of native silver. The activity ratio \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the system gradually decreased due to the removal of SO42?, which resulted in the stabilization of a sulfoselenide with higher selenium content. As a result of reaction progress, grains of Ag2(S,Se) became gradually enclosed in newly formed native silver, and therefore isolated from further reactions with the grain-boundary fluid. Grains isolated early during the process show low content of Se reflecting high \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the equilibrium fluid, while grains showing high Se reflect the composition of late low \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) fluids. Analyses of Se-bearing polybasite show that selenium is preferentially partitioned into Ag2(S,Se) compared to polybasite. The model presented here demonstrates how oxidation of sulfoselenides leads to fractionation of sulfur and selenium.  相似文献   

8.
Strain responses of frozen clay with thermal gradient under triaxial creep   总被引:1,自引:1,他引:0  
Thermal gradient is one of the main features for the temperature distribution in artificial frozen shaft lining (FSL). The time-dependent strain responses and the corresponding heterogeneity characteristics of frozen soils with thermal gradient are of potential significance for stability assessment and prediction of FSL, especially of the FSL embedded in thick alluvium. A series of triaxial creep tests were carried out on frozen saturated clay under various thermal gradients and creep stresses. The experimental results indicated that the triaxial creep curves for frozen clay with thermal gradient exhibit viscous characteristics, and the creep rate \(\Delta \varepsilon_{\text{a}} /\Delta t\) decreases with the increase in creep time \(t\) and decrease in thermal gradient. The stress–strain curve under different \(t\) showed that the creep stress has a marked growth when axial strain \(\varepsilon_{\text{a}} \le 1\,\%\). However, when \(\varepsilon_{\text{a}} \ge 1\,\%\), the growth rate decreases gradually. The deviation between measured radial strain \(\varepsilon_{\text{r}}^{\text{m}}\) under the middle specimen section height SSH and the calculated radial strain \(\varepsilon_{\text{r}}^{\text{c}}\) from the volumetric strain increases following a unified equation with the increase in axial strain. The radial strain \(\varepsilon_{\text{r}}^{\text{f}}\) for frozen clay with thermal gradient after experiment increases with the increase in SSH, and the slope of \( \varepsilon_{\text{r}}^{\text{f}} - {\text{SSH}} \) curve is significantly dependent on the thermal gradient and creep stress. The variation of \(\varepsilon_{\text{r}}^{\text{m}} - \varepsilon_{\text{r}}^{\text{c }}\) during experiment and \(\varepsilon_{\text{r}}^{\text{f}}\) distribution after experiment are the macro-responses of internal micro-heterogeneities in frozen soils induced from thermal gradient, and are closely related to strain rate and its variation. These observations and findings provide an insight into the creep mechanism and the estimation method of creep deformation for frozen soils with thermal gradient.  相似文献   

9.
Platinum-based cytotoxic drugs are complexes of Pt used in 50–70% of cancer patients. This study was performed during 2015, in two oncology wards of Qom hospitals in Iran. Sampling was carried out using effluent of the oncology wards for measurement of total Pt concentration. Analysis was performed by ICP–OES, and limit of detection was determined (LODs = 1 µg/L). During the sampling days, the total Pt concentration in the wastewater effluent oncology ward ranged from 5 to 762 µg/L at Shahid Beheshti Hospital and from 3 to 629 µg/L at Hazrat Masoumeh Hospital. According to the results from concentration of cytotoxic drugs, the predicted environmental concentrations (PECs) (ng/L) in wastewater treatment plant effluent and river for cisplatin, carboplatin and oxaliplatin were determined. Calculated RQhww showed that \(\sum {\text{RQ}}_{\text{hww}} = 1.19\). Thus, the total platinum compound drug could have potential toxicity effect on aquatic organisms. It was concluded that monitoring of cytotoxic drugs residue in hospital effluent must be considered because of their toxicity and impact on aquatic pollution. The results also revealed that PEC < 10 ng/L for all the platinum compound drugs and sum of the PEC calculation (\(\sum {\text{PEC}}_{{{\text{cis}},{\text{carbo}},{\text{oxali}}}}\)).  相似文献   

10.
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium–aluminum-rich inclusions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can constrain the melt’s isotopic compositions. However, equilibrium α is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt–vapor systems based on first-principles molecular dynamics and the high-temperature approximation of the Bigeleisen–Mayer equation. We found that, at 2500 K, δ25Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141?±?0.004 and 0.143?±?0.003‰ more positive than in their respective vapors. The corresponding δ26Mg values were 0.270?±?0.008 and 0.274?±?0.006‰ more positive than in vapors, respectively. The general \(\alpha - T\) equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt–vapor systems were: \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.264 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\) and \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.340 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\), respectively, where m is the mass of light isotope 24Mg and m′ is the mass of the heavier isotope, 25Mg or 26Mg. These results offer a necessary parameter for mechanistic understanding of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.  相似文献   

11.
Tetraethylenepentamine-modified sugarcane bagasse (SCB) was prepared to improve its adsorption capacity and selectivity toward Cu2+. Adsorption performances of the modified sorbent for Cu2+ were studied in batch system. Separation of Cu2+ from Pb2+ by the modified sorbent fixed-bed column were studied under dynamic system with initial molar concentration ratio \(\left( {C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}} } \right)\) ranging from 1:1 to 1:100. The amount of Cu2+ and Pb2+ adsorbed on the saturated column was calculated by the elution curve. Batch experimental results showed that the adsorption capacity of the sorbent for Cu2+ increased from 0.12 to 0.21 mmol g?1 after modification. Dynamic adsorption results showed that the modified SCB had higher adsorption affinity toward Cu2+ than Pb2+. 0.07 mmol g?1 of adsorbed Pb2+ was pushed off by Cu2+ during the competitive adsorption process at \(C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}} = {\text{1:1}}.\) The breakthrough curves and adsorption kinetics of Cu2+ in the column could be fitted well by the Yoon–Nelson and modified Yoon–Nelson model, respectively. According to the elution curve, the amount of Cu2+ adsorbed on the fixed-bed column were 0.16, 0.16 and 0.15 mmol g?1, while that of Pb2+ were 0.0016, 0.0051 and 0.0094 mmol g?1 when \(C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}}\) increased from 1:1 to 1:10 and 1:100. Cu2+ could be selectively adsorbed and separated from Pb2+ by using the modified sorbent fixed-bed column.  相似文献   

12.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

13.
We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.  相似文献   

14.
The liquidus water content of a haplogranite melt at high pressure (P) and temperature (T) is important, because it is a key parameter for constraining the volume of granite that could be produced by melting of the deep crust. Previous estimates based on melting experiments at low P (≤0.5 GPa) show substantial scatter when extrapolated to deep crustal P and T (700–1000 °C, 0.6–1.5 GPa). To improve the high-P constraints on H2O concentration at the granite liquidus, we performed experiments in a piston–cylinder apparatus at 1.0 GPa using a range of haplogranite compositions in the albite (Ab: NaAlSi3O8)—orthoclase (Or: KAlSi3O8)—quartz (Qz: SiO2)—H2O system. We used equal weight fractions of the feldspar components and varied the Qz between 20 and 30 wt%. In each experiment, synthetic granitic composition glass + H2O was homogenized well above the liquidus T, and T was lowered by increments until quartz and alkali feldspar crystalized from the liquid. To establish reversed equilibrium, we crystallized the homogenized melt at the lower T and then raised T until we found that the crystalline phases were completely resorbed into the liquid. The reversed liquidus minimum temperatures at 3.0, 4.1, 5.8, 8.0, and 12.0 wt% H2O are 935–985, 875–900, 775–800, 725–775, and 650–675 °C, respectively. Quenched charges were analyzed by petrographic microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMPA). The equation for the reversed haplogranite liquidus minimum curve for Ab36.25Or36.25Qz27.5 (wt% basis) at 1.0 GPa is \(T = - 0.0995 w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 3} + 5.0242w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 2} - 88.183 w_{{{\text{H}}_{ 2} {\text{O}}}} + 1171.0\) for \(0 \le w_{{{\text{H}}_{ 2} {\text{O}}}} \le 17\) wt% and \(T\) is in °C. We present a revised \(P - T\) diagram of liquidus minimum H2O isopleths which integrates data from previous determinations of vapor-saturated melting and the lower pressure vapor-undersaturated melting studies conducted by other workers on the haplogranite system. For lower H2O (<5.8 wt%) and higher temperature, our results plot on the high end of the extrapolated water contents at liquidus minima when compared to the previous estimates. As a consequence, amounts of metaluminous granites that can be produced from lower crustal biotite–amphibole gneisses by dehydration melting are more restricted than previously thought.  相似文献   

15.
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\)), differences of circular vertical and horizontal \(\sigma ^{\mathrm{o}} \, (\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}})\) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (\({\hbox {RMS}}_{\mathrm{height}}\)). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., \(\sigma ^{\mathrm{o}}\). Near surface SM measurements were related to \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\) derived using 5.35 GHz (C-band) image of RISAT-1 and \({\hbox {RMS}}_{\mathrm{height}}\). The roughness component derived in terms of \({\hbox {RMS}}_{\mathrm{height}}\) showed a good positive correlation with \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}} \, (R^{2} = 0.65)\). By considering all the major influencing factors (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\)), an SEM was developed where SM (volumetric) predicted values depend on \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\). This SEM showed \(R^{2}\) of 0.87 and adjusted \(R^{2}\) of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (\({\hbox {SM}}_{\mathrm{Observed}}\)) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash–Sutcliffe efficiency (NSE) = 0.91 (\({\approx } 1\)), index of agreement (d) = 1, coefficient of determination \((R^{2}) = 0.87\), mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences \(({\hbox {S}}_{\mathrm{d}}^{2}) = 0.004\). The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on \(\sigma ^{\mathrm{o}}\). By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.  相似文献   

16.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

17.
Ephesite, Na(LiAl2) [Al2Si2O10] (OH)2, has been synthesized for the first time by hydrothermal treatment of a gel of requisite composition at 300≦T(° C)≦700 and \(P_{H_2 O}\) upto 35 kbar. At \(P_{H_2 O}\) between 7 and 35 kbar and above 500° C, only the 2M1 polytype is obtained. At lower temperatures and pressures, the 1M polytype crystallizes first, which then inverts to the 2M1 polytype with increasing run duration. The X-ray diffraction patterns of the 1M and 2M1 poly types can be indexed unambiguously on the basis of the space groups C2 and Cc, respectively. At its upper thermal stability limit, 2M1 ephesite decomposes according to the reaction (1) $$\begin{gathered} {\text{Na(LiAl}}_{\text{2}} {\text{) [Al}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{{\text{10}}} {\text{] (OH)}}_{\text{2}} \hfill \\ {\text{ephesite}} \hfill \\ {\text{ = Na[AlSiO}}_{\text{4}} {\text{] + LiAl[SiO}}_{\text{4}} {\text{] + }}\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ + H}}_{\text{2}} {\text{O}} \hfill \\ {\text{nepheline }}\alpha {\text{ - eucryptite corundum}} \hfill \\ \end{gathered}$$ Five reversal brackets for (1) have been established experimentally in the temperature range 590–750° C, at \(P_{H_2 O}\) between 400 and 2500 bars. The equilibrium constant, K, for this reaction may be expressed as (2) $$log K{\text{ = }}log f_{{\text{H}}_{\text{2}} O}^* = 7.5217 - 4388/T + 0.0234 (P - 1)T$$ where \(f_{H_2 O}^* = f_{H_2 O} (P,T)/f_{H_2 O}^0\) (1,T), with T given in degrees K, and P in bars. Combining these experimental data with known thermodynamic properties of the decomposition products in (1), the following standard state (1 bar, 298.15 K) thermodynamic data for ephesite were calculated: H f,298.15 0 =-6237372 J/mol, S 298.15 0 =300.455 J/K·mol, G 298.15 0 =-5851994 J/mol, and V 298.15 0 =13.1468 J/bar·mol.  相似文献   

18.
Raman sprectra of a gypsum crystal were made at pressures between 0.001 and 7 kbar using He gas as the pressure medium. \(\frac{{{\text{d}}v}}{{dP}}\) values for bands in the range 3,600–100 cm?1 were obtained. Comparison of results with \(\frac{{{\text{d}}v}}{{{\text{d}}T}}\) from the literature for temperatures of 77 and 300° K. shows that the internal modes of the SO4 units are more sensitive to pressure than to temperature. The effect is small. Coupled H2O-SO4 translational modes are greatly affected by both pressure and temperature while coupled Ca-SO4 mode are less so. It was found that stretching vibrations of water molecules were affected differently under pressure. The band at 3,500 cm?1 is more greatly displaced by pressure \(\left( {\frac{{{\text{d}}v}}{{{\text{d}}P}} = {\text{2}}{\text{.11cm}}^{{\text{ - 1}}} /{\text{kbar}}} \right)\) than the band at 3,400 cm?1 \(\left( {\frac{{{\text{d}}v}}{{{\text{d}}P}} \simeq {\text{2}}{\text{.11cm}}^{{\text{ - 1}}} /{\text{kbar}}} \right)\) . Assuming two different hydrogen bond intensities for the water molecules, one can attribute this difference in behavior of stretching modes to and increase in hydrogen bonding of one of the hydrogens which is exterior to the double H2O planes in the gypsum structure. The great variety of pressure derivatives for the different types of vibrational modes observed indicates that each molecular unit readjusts internally to pressure induced volume changes and the some of the chemical bonds between the units are significantly affected.  相似文献   

19.
Clayey-silt aquitards account for 60 % of the ~100-m-thick alluvial sediment sequence in the Gunnedah area of eastern Australia. To better understand the stress-dependent hydraulic properties of these low-permeability units, oedometer test data presented for the first time in this study have been integrated with geotechnical centrifuge permeameter tests. Estimates of vertical pre-consolidation effective stress (\(\sigma_{\text{p}}^{'}\)), vertical in situ effective stress (\(\sigma_{\text{i}}^{'}\)), and over-consolidation ratio (OCR) were used to determine whether centrifugation stresses caused compression of core samples, and the degree to which vertical hydraulic conductivity (K v) assessments were representative of the core samples tested. Results suggest that minimally disturbed drill core from semi-consolidated sediments (e.g., alluvial, colluvial, and eolian deposits) evaluated in this study should have target centrifugation stress less than \(\sigma_{\text{p}}^{'}, \) where OCR < 1 and \(\sigma_{\text{i}}^{'}\) where OCR > 1 to avoid significant changes in hydraulic properties during plastic straining. The results also imply that the stress-dependent response of aquitards is critical to understand the sensitivity of groundwater resources in areas with multiple stakeholders such as mining, coal seam gas, and agriculture developments. Groundwater in alluvial sediments that is essential for irrigation, water supply, and base flows to rivers must be sufficiently disconnected from groundwater in coal seams that are depressurized for extraction of energy resources.  相似文献   

20.
The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980–1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure (P) or volatile pressure ( $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O ) are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature–pressure–melt fraction (T $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O F) space. Our modeled crystals indicate that (1) crystallization starts at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 200–280 MPa at F = 0.65–0.7, (3) crystals are transferred to $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 100–130 MPa (often accompanied by 10–20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O , in contrast, can be effected by fluxing the reservoir with CO2-rich vapors that are either released from deeper in the system or transported with the recharge magma. Temperature fluctuations of 20–40 °C, on the other hand, are an inevitable consequence of incremental, or pulsed, assembly of crustal magma bodies wherein each pulse interacts with ancestral, stored magmas. We venture that this “petrological cannibalism” accounts for much of the plagioclase zoning and textural complexity seen not only at Mount St. Helens but also at arc magmas generally. More broadly we suggest that the magma reservoir below Mount St. Helens is dominated by crystal mush and fed by frequent inputs of hotter, but compositionally similar, magma, coupled with episodes of magma ascent from one storage region to another. This view both accords with other independent constraints on the subvolcanic system at Mount St. Helens and supports an emerging view of many active magmatic systems as dominantly super-solidus, rather than subliquidus, bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号