首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Analysis of the chlorine, fluorine and water content of approximately 200 samples from a total of fourteen mineralized and ten barren intrusive rocks from the Caribbean and Central America indicates that abundances of these constituents fail to distinguish mineralized rocks from barren rocks. Variations in background abundances arise from the increase in halogen content of potassium-rich rocks and from the depletion of halogens in altered and porphyritic rocks. A particularly well developed potassium-fluorine covariance is observed in tin-bearing granites, but such a covariance cannot be used to distinguish intrusive rocks associated with porphyry copper mineralization.  相似文献   

2.
The Vinalhaven intrusive complex provides field and petrographic evidence for multiple replenishments of mafic and silicic magmas, mingling and limited mixing, and rejuvenation of granite. Quartz in granitic rocks preserves a record of those processes, in the form of cathodoluminescence (CL) zoning, which is related to concentration of titanium, and to temperature of crystallization using the new TitaniQ (Ti in quartz) geothermometer. Injection of mafic melts into partly crystalline Vinalhaven granite resulted in partial quartz resorption followed by higher-temperature growth from H2O-undersaturated melt. This is shown by steep, rimward increases in CL intensity and Ti content across discordant boundaries that truncate older growth zones. Quartz zoning in granite affected by mafic magmas displays large rimward jumps in Ti content, whereas quartz in granitic feeders and in granite far from mafic rocks typically displays broad rims with decreasing Ti contents, consistent with slow cooling without thermal disruptions due to mafic recharge.  相似文献   

3.
《Earth》1999,45(3-4):145-165
Ammonium is present as a trace constituent in all granites, with an average concentration of 45 ppm (NH4+), equivalent to 35 ppm of elemental N. It shows wide variations related to petrography and region, but the only significant correlation between ammonium and other geochemical parameters is that it is most abundant in peraluminous granites and least abundant in peralkaline granites. These variations can be related to (a) the amount of sedimentary material in the magmatic source region, and (b) redox conditions in the source region. The ammonium content of granitic magmas can also be modified by fractionation or contamination. Hydrothermal alteration has a major effect on the ammonium content of granitic rocks, and variation due to this cause may exceed the magmatic variation. Most hydrothermally altered granites are enriched in ammonium as a result of the transfer of ammonium from sedimentary country rocks by the hydrothermal fluids.  相似文献   

4.
The Late Archaean-Early Proterozoic Transvaal Sequence is preserved within the Transvaal, Kanye and Griqualand West basins, with the 2050 Ma Bushveld Complex intrusive into the upper portion of the succession within the Transvaal basin. Both Transvaal and Bushveld rocks are extensively mineralized, the former containing large deposits of iron, manganese, asbestos, andalusite, gold, fluorine, lead, zinc and tin ores, and the latter some of the World's major occurrences of PGE, chromium and vanadium ores. Transvaal sedimentation began with thin, predominantly clastic sedimentary rocks (Black Reef-Vryburg Formations) which grade up into a thick package of carbonate rocks and BIF (Chuniespoort-Ghaap-Taupone Groups). These lithologies reflect a carbonate-BIF platform sequence which covered much of the Kaapvaal craton, in reaction to thermal subsidence above Ventersdorp-aged rift-related fault systems. An erosional hiatus was followed by deposition of the clastic sedimentary rocks and volcanics of the Pretoria-Postmasburg-Segwagwa Groups within the three basins, under largely closed-basin conditions. An uppermost predominantly volcanic succession (Rooiberg Group-Loskop Formation) is restricted to the Transvaal basin. A common continental rift setting is thought to have controlled Pretoria Group sedimentation, Rooiberg volcanism and the intrusion of the mafic rocks of the Rustenburg Layered Suite of the Bushveld Complex. The dipping sheets of the Rustenburg magmas cut across the upper Pretoria Group stratigraphy and lifted up the Rooiberg lithologies to form the roof to the complex. Subsequent granitic rocks of the Lebowa and Rashoop Suites of the Bushveld Complex intruded both upper Rustenburg rocks and the Rooiberg felsites.  相似文献   

5.
The Cayconi Formation of the Crucero Basin, Puno Department, southeastern Peru, has been described as a 800–1000 m sequence of Oligocene and Miocene fanglomerate and lacustrine sedimentary rocks, interlayered with mafic and silicic volcanic rocks, and unconformably overlying Paleozoic and Cretaceous successions. On the basis of new field and petrological investigations, key aspects of the stratigraphic relationships of the rocks comprising this formation, and hence the viability of this lithostratigraphic name, are questioned. Thus, several sedimentary units previously assigned to the Cayconi Formation are reinterpreted as Cretaceous or older. We further argue that the formational terminology fails to accomodate the great variety of volcanic rocks, which are, moreover, disposed in isolated eruptive fields. We therefore propose establishment of the Crucero Supergroup as a broad, yet flexible framework for lithostratigraphic subdivision of the Tertiary sequences of the Cordillera Oriental of southeastern Peru. This new nomenclature accomodates the voluminous two-mica ash flow tuffs (Macusani Volcanics) and associated rocks of the Quenamari Meseta, a succession excluded from the existing lithostratigraphic classification scheme. It also permits distinction between the petrogenetically-contrasted upper Oligocene — Lower Miocene and Middle Miocene — Upper Miocene volcanic suites, which dominate, respectively, the Picotani and Quenamari Groups comprising the proposed Crucero Supergroup. Finally, the economically important granitic/rhyolitic intrusive centers cogenetic with the volcanic rocks are readily assignable to intrusive lithodemes in each group.  相似文献   

6.
湖南前震旦系铀矿化成因探讨   总被引:1,自引:0,他引:1  
田应龙 《铀矿地质》1990,6(1):11-18
湖南前震旦系冷家溪群和板溪群是一套浅变质沉积岩,主要由各种板岩、变质砂岩、凝灰质板岩组成,夹有基性、中-酸性火山熔岩、火山碎屑岩及碳酸盐岩。现已落实铀矿床3个、矿(化)点14个。铀成矿年龄为85—50Ma,最晚者16Ma。稳定同位素研究结果表明,前震旦系铀矿化属岩浆岩源及沉积(变质)岩源中-新生代大气降水热液成因;铀矿化受断裂构造控制;凝灰质板岩、砂质板岩及角岩等是矿化有利的围岩。  相似文献   

7.
Initial 87Sr/86Sr ratios, major and trace element compositions have been determined for the Paleogene granitic rocks in the Tsukuba district, Japan. Isotopic ages strongly suggest that the granitic rocks (seven units) were continuously emplaced and solidified during a short time interval. Initial 87Sr/86Sr ratios for seven granitic units vary from 0.7082 to 0.7132, while sedimentary and metasedimentary country rocks have ratios at the time of granitic magma emplacement ranging from 0.7149 to 0.7298. Continuous linear arrays for the granitic rocks in the diagrams of initial 87Sr/86Sr ratios versus some chemical parameters can be explained by either of following two processes. One is the assimilation — fractional crystallization (AFC) process between the parental magma (SiO2 of 68% and initial ratio of 0.7078) and sedimentary country rocks, and the other is magma mixing process between above parental magma and sediment derived acidic magma (melt) (SiO2 of 75%). The high initial ratios (0.7078–0.7098) for basic rocks such as gabbro or diorite in the Tsukuba district and the similar characteristics observed in the rocks of Ryoke belt (SW Japan) suggest that the parental magma had the same source region as the basic rocks, probably the lower crustal source.  相似文献   

8.
西准噶尔塔尔巴哈台-谢米斯台地区研究和找矿勘探工作十分薄弱,近年来随着谢米斯台铜矿的发现,本项目组陆续发现了喀因德、乌兰浩特、阿依德、巴汗等铜矿点,指示该区具有与火山热液活动有关的铜成矿作用有的潜力。本文对这些矿床(点)开展了地质特征、年代学和地球化学研究显示,区内发育的阿尔木强、谢米斯台铜矿床以及喀因德、乌兰浩特、阿依德、巴汗等铜矿点与火山岩地层密切相关,矿化主要表现为黄铁矿化、孔雀石化,发育绿帘石化、绿泥石化、硅化、碳酸岩化等蚀变,具有火山热液型铜矿特点。锆石LA-ICP-MS U-Pb测年获得喀因德铜矿点火山岩年龄为455.1±5.4Ma,乌兰浩特铜矿点火山岩年龄为428.6±4.6Ma,阿依德铜矿点火山岩年龄为428.8±7.2Ma,谢米斯台铜矿床火山岩年龄为424.3±4.3Ma,阿尔木强铜矿床火山岩年龄为426.7Ma,巴汗铜矿点火山岩年龄为411.7±4.7Ma,可分为晚奥陶世、中志留世、早泥盆世三个阶段,以中志留世为主。地球化学特征显示晚奥陶世、中志留世、早泥盆世三个阶段的火山岩均形成于岛弧环境;且具有类似的岩浆源区和演化过程;岩浆在上升侵位过程中没有明显的受到外来物质混染。综合地质、年代学和地球化学特征显示,塔尔巴哈台-谢米斯台地区与火山热液有关的铜矿床(点)主要受控于构造背景、地层组合、岩石类型、蚀变、控矿构造等因素,其中中志留世中基性火山岩、与火山机构相关的深部可能存在的次火山岩或浅成侵入岩分布区具有较好的找矿潜力。  相似文献   

9.
This study combines U–Pb age and Lu–Hf isotope data for magmatic and detrital zircons, with whole-rock geochemistry of the Browns Range Metamorphics (BRM), Western Australia. The BRM are medium- to coarse-grained metasandstones that consist of angular to sub-rounded detrital quartz and feldspars with minor granitic lithic fragments. The sequence has undergone partial to extensive quartz–muscovite alteration and rare-earth-element mineralisation and has been intruded by mafic/ultramafic, syenitic and pegmatitic intrusive rock units. Uranium–Pb and Lu–Hf isotopic data on detrital zircons from the metasandstones and intruding granitic rocks yield a well-defined age of ca 3.2 to ca 3.0 Ga for all samples, with relatively radiogenic ?Hf values (?Hf = –1.7 to 5.1) indicating derivation from Mesoarchean granite basement of juvenile origin. This is consistent with geochemical and petrological data that support deposition from a granitic source in a continental rift basin setting. The timing of sediment deposition is constrained between the ca 3.0 Ga age of the source rocks and ca 2.5 Ga age of the granitic intrusive bodies that cross-cut the metasedimentary rocks. The ca 2.5 Ga zircons from the intrusive rocks have ?Hf model ages of ca 3.4 to ca 3.1 Ga, which is consistent with formation via partial melting of the BRM, or the Mesoarchean granite basement. Zircons of the Gardiner Sandstone that unconformably overlies the BRM return detrital ages of ca 2.6 to ca 1.8 Ga with no trace of ca 3.1 Ga zircons, which discounts a significant contribution from the underlying BRM. The Mesoarchean age and isotopic signatures of the BRM zircons are shared by some zircon records from the Pine Creek Orogen, and the Pilbara, Yilgarn and Gawler cratons. Collectively, these records indicate that juvenile Mesoarchean crust is a more significant component of Australian cratons than is currently recognised. This work also further demonstrates that detrital minerals in Paleoproterozoic/Archean sedimentary rocks are archives to study the early crustal record of Earth.  相似文献   

10.
The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica±cordierite±Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293–289 Ma). SiO2 content in the granitic rocks ranges from 57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite±amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica±Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite±hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to 300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40–4.5), Th/Sm (0.1–3.6), Th/Ta (0–70), Ba/Nb (1–150), and Ba/Ta (50–2100), as well as low values of Nb/U (2–28) and La/Th (1–10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock 18O ranges from +8.2 to +11.7; the mafic cumulate enclaves have the lowest 18O values and the two-mica granites have the highest values. 18O values for biotite±honblende tonalitic and granodioritic rocks (9.1 to 10.8) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb 18.17–18.45, 207Pb/204Pb 15.58–15.77, 208Pb/204Pb 38.20–38.76) also indicates the predominance of a crustal source. Although the granitic groups cannot be uniquely distinguished on the basis of their Pb isotope compositions most of the post-tectonic tonalites to granodiorites as well as two-mica granites are somewhat less radiogenic than the syn-tetonic tonalites and granodiorites. Only a few of the mafic enclaves overlap the Pb isotope field of the granitic rocks and are consistent with a cogenetic origin. The Sila batholith was generated by mixing of material derived from at least two sources, mantle-derived and crustal, during the closing stages of plate collision and post-collision. The batholith ultimately owes its origin to the evolution of earlier, more mafic parental magmas, and to complex intractions of the fractionating mafic magmas with the crust. Hybrid rocks produced by mixing evolved primarily by crystal fractionation although a simple fractionation model cannot link all the granitic rocks, or explain the entire spectrum of compositions within each group of granites. Petrographic and geochemical features characterizing the Sila batholith have direct counterparts in all other granitic massifs in the Calabrian-Peloritan Arc. This implies that magmatic events in the Calabrian-Peloritan Arc produced a similar spectrum of granitic compositions and resulted in a distinctive type of granite magmatism consisting of coeval, mixed, strongly peraluminous and metaluminous granitic magmas.  相似文献   

11.
区内矿产资源丰富,有铜、铅—锌、金、铁、汞、镍六种成型矿床。区内古生代、中生代地层中海相火山岩层可作为有利的赋矿层,中生代沉积地层,尤其是三叠系地层可作为有利找矿层。铜、铁矿床形成与侵入岩有关。成矿带明显受北西、北西西、北西转南北向区域性深、大断裂控制。与中—酸侵入岩有关的矿床,局部重力异常多表现为圆形、椭圆形的重力低,矿床主要位于负异常中心及边部地带。航磁异常多有异常反映,幅值一般在50nT以下。与赵基性—基性侵岩有关矿床,局部重力异常表现为椭圆形的正异常,矿床位于正异常边部,且与一正磁异常对应。  相似文献   

12.
Manganoan ilmenite with a variable manganese content occurs as an early accessory constituent of granitic rocks in the Ôsumi Peninsula, southern Kyushu. Electron probe micro-analysis of a grain containing highest manganese gives the structural formula (Fe 1.23 2+ Mn 0.81 2+ ) (Ti1.97) O6, if all of the manganese and iron are in the divalent state. The manganese content of manganoan ilmenite increases with an increase of the differentiation index of host rocks, however, the amount of ilmenite tends to decrease with the increase of the same index. The mode of occurrence of the ilmenite suggests that it is the first mafic mineral to precipitate from the magma. The average value of the distribution coefficient of manganese and ferrous iron between ilmenite and granitic magma is 5.5, if the Mn/Fe ratio of the granitic rocks represents that of granitic magma. The variation in the FeO and MnO contents against the differentiation index for granitic rocks of the Ôsumi Peninsula, and the value of the distribution coefficient, show that high manganoan ilmenite is stable in the most differentiated granitic rock of the Ôsumi Peninsula.  相似文献   

13.
The Quanji Massif is located on the north side of the Qaidam Block and is interpreted as an ancient cratonic remnant that was detached from the Tarim Craton. There are regionally exposed granitic gneisses in the basement of the Quanji Massif whose protoliths were granitic intrusive rocks. Previous studies obtained intrusion ages for some of these granitic gneiss protoliths. The intrusion ages span a wide range from ~ 2.2 Ga to ~ 2.47 Ga. This study has determined the U-Pb zircon age of four granitic gneiss samples from the eastern, central and western parts of the Quanji Massif. CL images and trace elements show that the zircons from these four granitic gneisses have typical magmatic origins, and experienced different degrees of Pb loss due to strong metamorphism and deformation. LA-ICPMS zircon dating yields an upper intercept age of 2381 ± 41 (2σ) Ma from monzo-granitic gneiss in the Hudesheng area and 2392 ± 25 (2σ) Ma from granodioritic gneiss in the Mohe area, eastern Quanji Massif, and 2367 ± 12 (2σ) Ma from monzo-granitic gneiss in the Delingha area, central Quanji Massif, and 2372 ± 22 (2σ) Ma from monzo-granitic gneiss in the Quanjishan area, western Quanji Massif. These results reveal that the intrusive age of the protoliths of the widespread granitic gneisses in the Quanji Massif basement was restricted between 2.37 and 2.39 Ga, indicating regional granitic magmatism in the early Paleoproterozoic, perhaps related to the fragmentation stage of the Kenorland supercontinent. Geochemical results from the granodioritic gneiss from the Mohe area indicate that the protolith of this gneiss is characterized by adakitic rocks derived from partial melting of garnet-amphibolite beneath a thickened lower crust in a rifting regime after continent-continent collision and crustal thickening, genetically similar to the TTG gneisses in the North China Craton. This suggests that the Quanji Massif had a tectonic history similar to the Archean Central Orogenic Belt of North China Craton during the early Paleoproterozoic. We tentatively suggest that the Quanji Massif and the parental Tarim Craton and the North China Craton experienced rifting in the early Paleoproterozoic, after amalgamation at the end of the Archean. The Tarim Craton and North China Craton might have had close interaction from the late Neoarchean to the early Paleoproterozoic.  相似文献   

14.
ELA-ICP-MS U–Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu–Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallón Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multi-vent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46±0.14 to 7.94±0.27 Ma. Regionally extensive silicic explosive volcanism occurred at ~8.0 Ma (8.05±0.13 and 7.96±0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02±0.14 and 7.98±0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95±0.17 Ma) and rhyolitic diatremes (7.79±0.13 Ma) deposited thick tuff blankets across the region. Emplacement of large intermediate composition stocks occurred at 7.37±0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10±0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10± 0.06 to 6.93±0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92±0.07 Ma). The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu–Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.Electronic Supplementary Material Electronic supplementary material to this paper can be obtained by using the Springer Link server located at Editorial handling: N. White  相似文献   

15.
Chemical analysis of biotite in representative granitic rocks in Japan shows that the total Al (TAl) content changes with the metal type of the accompanying hydrothermal ore deposits and increases in the following order: Pb‐Zn and Mo deposits < Cu‐Fe and Sn deposits < W deposits < non‐mineralized granitic rocks. The TAl content of biotite in granitic rocks may be a useful indicator for distinguishing between mineralized and non‐mineralized granitic rocks. A good positive correlation is seen between the TAl content of biotite and the solidification pressure of the granitic rocks estimated by sphalerite and hornblende geobarometers and the mineral assemblages of the surrounding rocks. These facts suggest that the TAl content of biotite can be used to estimate the solidification pressure (P) of the granitic rocks. The following empirical equation was obtained: where TAl designates the total Al content in biotite on the basis O = 22. According to the obtained biotite geobarometer, it is estimated that Pb‐Zn and Mo deposits were formed at pressures below 1 kb, Cu‐Fe and Sn deposits at 1–2 kb, W deposits at 2–3 kb and non‐mineralized granitic rocks were solidified at pressures above 3 kb.  相似文献   

16.
The Mount Stuart batholith is a Late Cretaceous calc-alkaline pluton composed of rocks ranging in composition from two-pyroxene gabbro to granite. Quartz diorite is most abundant. This batholith may represent the plutonic counterpart of the high-alumina basalt association. A petrogenetic model is developed in which this intrusive series evolved from one batch of magnesian high-alumina basalt, represented by the oldest intrusive phase, by successive crystal fractionation of ascending residual magma. However, the possibility that this intrusive suite originated from an andésite (quartz diorite) parent by fractionation cannot be excluded.Computer modeling of this intrusive sequence provides a quantitative evaluation of the sequential change of magma composition. These calculations clearly indicate that the igneous suite is consanguineous, and that subtraction of early-formed crystals from the oldest rock is capable of reproducing the entire magma series with a remainder of 2–3% granitic liquid. This model requires that large amounts of gabbroic cumulate remain hidden at depth- an amount equal to approximately 8–10X the volume of the exposed batholith. Mass balances between the amounts of cumulate and residual liquid calculated compare favorably with the observed amounts of intermediate rocks exposed in the batholith, but not with the mafic rocks.Mafic magmas probably fractionated at depth by crystal settling, whereas younger quartz diorite and more granitic magmas underwent inward crystallization producing gradationally zoned plutons exposed at present erosional levels.  相似文献   

17.
文章首次对冈底斯成矿带的甲马和知不拉铜_铅_锌矿床的辉钼矿进行了Re_Os同位素定年。甲马矿区辉钼矿的模式年龄介于15.4~15.5Ma之间,7件样品得到187Re_187Os等时线年龄为(15.18±0.98)Ma。知不拉矿区辉钼矿样品的模式年龄介于16.88~17.06Ma之间,5件样品得到187Re_187Os等时线年龄为(16.90±0.64)Ma。获得的Re_Os年龄与冈底斯成矿带驱龙、拉抗俄和冲江、厅宫等斑岩铜矿床的成矿年龄一致,明显晚于侏罗纪拉萨弧间盆地的发育时限。据此作者认为甲马和知不拉等铜_铅_锌矿床不属于喷流型矿床,而是冈底斯成矿带斑岩_矽卡岩成矿系统的组成部分,是岩浆_热液流体系统在不同的深度条件下与富钙围岩交代成矿的产物。  相似文献   

18.
何文兴 《福建地质》2010,29(4):296-301
建瓯周地美铌钽矿和南平西坑大型铌钽矿同处于政和—南平硫、多金属、铌钽成矿带上。区内伟晶岩可分为强交代型伟晶岩和弱交代型伟晶岩二大类,前者一般为铌钽矿体,后者一般为铌钽矿化体,花岗伟晶岩具有全岩矿化的特点。花岗伟晶岩脉成群成带平行分布,多数沿北北东向、北东向断裂、褶皱轴部贯入,与围岩呈微斜交。铌钽矿具有地层、构造、侵入岩多重控矿的特点。  相似文献   

19.
Regional mapping (1:50,000) and U-Pb and K-Ar geochronology in the El Indio region refines the knowledge of the distribution, lithostratigraphy, and age of the sedimentary, volcanic, and intrusive rocks that comprise the regionally extensive Pastos Blancos Group which is equivalent to the Choiyoi Group of the Argentine Frontal Cordillera. The Pastos Blancos Group (which we elevate to Group status herein) includes at least two diachronous volcanic–sedimentary sequences: an older felsic volcanic and volcaniclastic unit, the Guanaco Sonso sequence, that is Permian in age, and a younger bimodal volcanic and volcaniclastic unit, the Los Tilos sequence that is Middle Triassic to Early Jurassic. Sedimentary rocks of the Los Tilos sequence are transitional upward into the overlying Early to Middle Jurassic shallow marine limestones of the Lautaro Formation.Intrusions that make up the regionally extensive Permian to Early Jurassic plutons of the Chollay and Elqui-Limarı́ batholiths that were previously mapped as a single plutonic association, the Ingaguás Complex, include in the El Indio region at least three discrete intrusive units. These include: Early Permian (280–270 Ma) biotite granites, Early to Middle Triassic (242–238 Ma) silica-rich leucocratic granites and rhyolitic porphyries that made up the bulk of the Chollay Batholith, and a younger Late Triassic–Early Jurassic unit (221–200 Ma) of mainly intrusive rhyolitic porphyries, extrusive domes, and subordinate mafic intrusions and both felsic and mafic dikes, which are coeval with volcanic rocks of the Los Tilos sequence.Our data show that latest Paleozoic to Early Jurassic intrusive, volcanic, and sedimentary rocks in the El Indio region of the High Andes of Chile between 29–30°S likely formed during extension driven processes after the cessation of Carboniferous–Early Permian subduction along the western edge of Gondwana. These processes began by Late Permian time, but instead of recording a single and protracted magmatic event, as has been previously suggested, rocks that belong to the Pastos Blancos Group and the Ingaguás Intrusive Complex record at least three discrete periods of silicic to bimodal magmatism which occurred during the Middle Permian to Early Jurassic interval.  相似文献   

20.
Early Paleozoic magmatism of the Tannuola terrane located in the northern Central Asian Orogenic Belt is important to understanding the transition from subduction to post-collision settings. In this study, we report in situ zircon U-Pb ages, whole rock geochemistry, and Sr-Nd isotopic data from the mafic and granitic rocks of the eastern Tannuola terrane to better characterize their petrogenesis and to investigate changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal three magmatic episodes for about 60 Ma from ∼510 to ∼450 Ma, that can be divided into the late Cambrian (∼510–490 Ma), the Early Ordovician (∼480–470 Ma) and the Middle-Late Ordovician (∼460–450 Ma) stages. The late Cambrian episode emplaced the mafic, intermediate and granitic rocks with volcanic arc affinity. The late Cambrian mafic rocks of the Tannuola terrane may originate from melting of mantle source that contain asthenosphere and subarc enriched mantle metasomatized by melts derived from sinking oceanic slab. Geochemical and isotopic compositions indicate the late Cambrian intermediate-granitic rocks are most consistent with an origin from a mixed source including fractionation of mantle-derived magmas and crustal-derived components. The Early Ordovician episode reveal bimodal intrusions containing mafic rocks and adakite-like granitic rocks implying the transition from a thinner to a thicker lower crust. The Early Ordovician mafic rocks are formed as a result of high degree melting of mantle source including dominantly depleted mantle and subordinate mantle metasomatized by fluid components while coeval granitic rocks were derived from partial melting of the high Sr/Y mafic rocks. The latest Middle-Late Ordovician magmatic episode emplaced high-K calc-alkaline ferroan granitic rocks that were formed through the partial melting the juvenile Neoproterozoic sources.These three episodes of magmatism identified in the eastern Tannuola terrane are interpreted as reflecting the transition from subduction to post-collision settings during the early Paleozoic. The emplacement of voluminous magmatic rocks was induced by several stages of asthenospheric upwelling in various geodynamic settings. The late Cambrian episode of magmatism was triggered by the slab break-off while subsequent Early Ordovician episode followed the switch to a collisional setting with thickening of the lower crust and the intrusion of mantle-induced bimodal magmatism. During the post-collisional stage, the large-scale lithospheric delamination provides the magma generation for the Middle-Late Ordovician granitic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号