首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
At 4:40p.m. on November 23, 2008, the Gongjiafang slope collapsed on the north bank of Yangtze River in Wu Gorge of Three Gorges Reservoir. The 380,000-m3 sliding mass consisted mainly of cataclastic rock. A video record of the major sliding incident was analyzed using the general laws of physical motion. The analysis indicated that the maximum speed and maximum acceleration of the sliding mass were 11.65?m/s and 2.23?m/s2, respectively, and that the maximum amplitude and the propagation velocity of the water wave near the landslide were 31.8?m and 18.36?m/s, respectively. Wave run-up investigation indicated that the maximum run-up on shore was 13.1?m, which declined to 1.1?m at Wushan dock 4?km away. The incident causes no casualties, but did result in economic losses of RMB five million. The numerical simulation model GEOWAVE was used to simulate and reproduced the impulse wave generated by the landslide; the results were in good agreement with the observed incident. The numerical simulation data were then applied to analyze the decay and amplification effects of the landslide wave in the river course. The field investigations and witness information provide valuable materials for the studies of landslide kinematics and impulse waves generated by landslides. In addition, the research results provide a useful reference for future similar waves generated by landslides in reservoirs.  相似文献   

2.
At about 8:30 p.m. on 27 August 2014, a catastrophic rock avalanche suddenly occurred in Fuquan, Yunnan, southwestern China. This landslide and related impulse water waves destroyed two villages and killed 23 persons. The impulse waves occurred after initiation of the landslide, caused by the main part of the slide mass rapidly plunging into a water-filled quarry below the source area. The wave, comprising muddy water and rock debris, impacted the opposite slope of the quarry on the western side of the runout path and washed away three homes in Xinwan village. Part of the displaced material traveled a horizontal distance of about 40 m from its source and destroyed the village of Xiaoba. To provide information for potential landslide hazard zonation in this area, a combined landslide–wave simulation was undertaken. A dynamic landslide analysis (DAN-W) model is used to simulate the landslide propagation before entering the quarry, while Fluent (Ansys Inc., USA) is used to simulate the impulse wave generation and propagation. Output data from the DAN-W simulation are used as input parameters for wave modeling, and there is good agreement between the observed and simulated results of the landslide propagation. Notably, the locations affected by recordable waves according to the simulation correspond to those recorded by field investigation.  相似文献   

3.
On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23?×?104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7?×?104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.  相似文献   

4.
基于地质灾害涌浪计算公式和局部水头损失理论,建立了地质灾害涌浪公式计算体系。该算法充分考虑了不同滑坡崩塌造成的涌浪效应、不同区域涌浪衰减的差异性和自然河道的沿程水头损失与局部水头损失问题; 大量采用地形参数进行计算,客观性强。以龚家方崩滑体产生涌浪为例进行了计算,其计算结果与实际调查值相关性非常高。结果显示:龚家方崩滑体产生最大涌浪高度为33.45m,急剧衰减区内平均100m下降4m、平缓衰减区内平均100m下降0.11m和在峡谷区向宽谷区传播时有扩大衰减效应的规律。  相似文献   

5.
This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the model is applied to investigate the effects of landslide deformations on water surface fluctuations in comparison with a simpler model considering a rigid landslide. The model results confirm the importance of both rheological behavior and two-phase nature of landslide in proper estimation of generated wave properties and formation patterns. Rigid slide modeling often overestimates the characteristics of induced waves. With a proper rheological model for landslide, the numerical prediction of LGWs gets more than 30 % closer to experimental measurements. Single-phase landslide results in relative errors up to about 30 % for maximum positive and about 70 % for maximum negative wave amplitudes. Two-phase constitutive structure of landslide has also strong effects on landslide deformations, velocities, elongations, and traveling distances. The complex behaviors of landslide and LGW of the experimental data are analyzed and described with the aid of the robust and accurate finite volume model. This can provide benchmark data for testing other numerical methods and models.  相似文献   

6.
The Guantan landslide, with a total displaced mass of about 468 × 104 m3, was triggered by the 2008 Wenchuan earthquake and succeeding rainfall in Jushui Town, Sichuan Province, China. The landslide occurred on an anti-dip hard rock slope with a weak rock founding stratum of 200 m in thickness. To investigate the failure mechanism of the Guantan landslide, dynamic behaviors of hard and soft rock slopes were investigated by means of large scale shaking table tests. The laboratory models attempted to simulate the field geological conditions of the Guantan landslide. Sinusoidal waves and actual seismic waves measured from the Wenchuan Earthquake were applied on the slope models under 37 loading configurations. The experimental results indicated that deformation mainly developed at a shallow depth in the upper part of the hard rock slope and in the upper (near the crest) and lower (near the toe) parts of the soft rock slope. An equation for predicting the depth of sliding plane was proposed based on the location of the maximum horizontal acceleration. Finally, it was concluded that the failure process of the Guantan landslide occurred in three stages: (1) toppling failure caused by compression of the underlying soft rock strata, (2) formation of crushed hard rock and sliding surface in soft rock as the result of seismic shocks, particularly in the horizontal direction, and (3) aftershock rainfall accelerates the process of mass movement along the sliding plane.  相似文献   

7.
A numerical model has been developed using the finite element method for the simulation of impulse waves generated by landslides. The fluid-like landslide is modeled as a generalized non-Newtonian visco-plastic fluid. A three-phase flow model based on the incompressible viscous Navier–Stokes equations is solved using the finite element method to describe the motion of the three types of fluid in landslide. The conservative level set method is expanded to n-phase flow cases and employed to capture the interface of the three phases: air, water, and the landslide. The overall performance of the approach is checked by a number of validation cases: a Rayleigh–Taylor instability problem to illustrate the capability of the proposed method to deal with interface capturing, a benchmark test of a subaerial landslide generated by an impulse wave is carried out and compared with the published experimental data and numerical results, and finally, the 1958 Lituya Bay landslide generated impulse wave, and its results are compared against a scaled-down experiment and other published numerical results. It can be noted that the current model has an excellent ability to capture the complex phenomena that occurs during the whole process of the landslide-generated impulse wave, and considering the simplified treatment of the landslide and the numerical model, fairly good agreement between computed and experimental results has been observed for all simulation cases.  相似文献   

8.
Subaerial landslides falling into confined water bodies often generate impulsive waves. Damaging landslide tsunamis in Three Gorges Reservoir, China, have struck several times in the last 15 years. On June 24, 2015, a 23?×?104 m3 slope failure occurred on the east bank of the Daning River opposite Wushan Town. The sliding mass intruded into the Three Gorges Reservoir and initiated a reservoir tsunami that resulted in two deaths and significant damage to shipping facilities. A post-event survey revealed the landslide geometry and wave run-up distribution, while an eyewitness video captured most of the landslide motion. Employing these firm constraints, we applied the Tsunami Squares method to simulate the 2015 Hongyanzi landslide and tsunami. The simulation revealed that the landslide experienced a progressive failure in the first few seconds and impacted the water with a maximum velocity of ~?16 m/s. The initial wave propagated to the opposite shore in an arch shape, and the water surface reached a maximum amplitude of ~?11 m near the landslide. Wave amplitude-time curves at four points on the river cross section show that the initial wave reached Wushan town in about 50 s with an average wave velocity of ~?30 m/s. The maximum wave run-ups on the shoreline opposite the landslide are around 6 m and attenuate to less than 1 m beyond 2-km distance. The landslide simulation matches the observed geological profile and the eyewitness video, and the numerical results coincide with the observed wave run-up heights. Nearly 80% of landslide energy is lost due to frictional resistances, but the remaining fraction imparted to the tsunami carried catastrophic consequences to a large region. The numerical results emphasize the efficiency and accuracy of Tsunami Squares method for a “Quick Look” simulation of a potential landslide.  相似文献   

9.
龚家方4号斜坡涌浪数值模拟分析   总被引:2,自引:0,他引:2  
对于库区滑坡来说,不能只考虑滑坡体本身造成的灾害,还要考虑滑坡体引起的涌浪灾害,为了研究滑坡涌浪的传播、衰减规律,在Geo-wave软件的技术上,二次开发形成FAST软件。以三峡库区龚家方4号斜坡为研究对象,分别在175、156、145 m的库水位条件下,在长约23 km、宽约10.4 km的区域内进行涌浪数值模拟,获得涌浪传播模拟数据。经过模拟软件数据处理模块的计算分析,形成了分析涌浪传播规律的一系列图件。对不同水位下涌浪模拟的计算结果进行对比分析发现,随着库水位的下降,滑坡产生的最大涌浪值和在对岸的爬高值都有增长的趋势,但其对航道存在威胁的时间逐渐变短。模拟区各位置的最大波高空间分布形态具有中间内凹、两翼沿岸坡延伸的特征。涌浪传播的急剧衰减区基本分布在涌浪源附近1 km的范围内,涌浪源处的波高越大,单位距离内的涌浪下降高度也越大。由于涌浪在岸边有叠加、壅高现象,建议航道内船只经过地质灾害点附近时应沿江中心快速通行。  相似文献   

10.
This paper presents a study of the effects of a potential landslide in La Yesca Reservoir, Jalisco-Nayarit, Mexico. The main purpose of the paper is to predict the maximum wave amplitude, wave run-up, and dam overtopping. The landslide is formed by an unstable slope of more than 24 Mm3 that is partially submerged for the range of the reservoir operation levels. The dynamics of the sliding mass were obtained in detail considering that it moves over a pair of failure surfaces with the potential rupture of a third surface. The paper presents results of a physical model of the reservoir based on Froude similitude (scale 1:200). Impulse waves are produced with a solid wedge shape slide as it moves on rails. The movement was calibrated to reproduce the dynamics of the landslide. Also, numerical modelling of the event was performed with a 2D implicit model that solves the two-dimensional shallow water equations. In this case, the impulse waves were generated at each time increment with the variation of the ground elevation (obtained from the dynamics of the landslide) for the mesh points where the landslide passes. The results of both studies are similar.  相似文献   

11.
有别于国内现行广泛应用Navie-Stokes方程进行地质灾害涌浪的数值模拟技术,本文采用波浪理论对地质灾害涌浪波进行了分析。地质灾害涌浪波是非周期性波,并且有强烈的非线性,介于中等水波至浅水波之间;可用浅水波模型和Boussinesq模型进行数学描述。本文采用有限差分法的Boussinesq模型,以三峡库区龚家方崩滑体涌浪为例,模拟了涌浪波的传播和爬高问题。该模型能够计算形成涌浪瞬时河面、河面最大波高图、最大流速矢量图、最大爬坡和预警分布图。模拟计算结果与调查结果吻合非常好。这说明基于波浪理论的地质灾害涌浪分析方法精度较高,为涌浪的预测研究提供了一种新的研究方法。  相似文献   

12.
Reservoir landslides pose a great threat to shipping safety, human lives and properties, and the operation of the hydropower station. In this paper, the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir is considered as an example to study the initiation mechanism and landslide-generated wave process of a reservoir landslide. The finite difference method and limit equilibrium analysis are used to analyze the deformation and failure characteristics of the Hongyanzi slope. Simulation results show that a large deformation (about 358 mm) happens in the shallow deposits under intermittent rainfall condition, and the slope is in a limit state. At the same time, continuous rapid drawdown of the water level (about ?0.55 m/day during 8–24 June 2015) reduced the support and accelerated the drainage of the water for the bank slope. A coupling effect of intermittent rainfall and rapid drawdown of the water level was the triggering factor of the 24 June Hongyanzi landslide. Landslide-generated wave process was simulated using a fluid–solid coupling method by integrating the general moving object collision model. Simulation results show that the landslide-generated wave is dominated by the impulse wave, which is generated by sliding masses entering the river with high speed. The maximum wave height is about 5.90 m, and the wave would decay gradually as it spreads because of friction and energy dissipation. To prevent reservoir landslides, the speed for the rising or drawdown of the water level should be controlled, and most importantly, rapid drawdown should be avoided.  相似文献   

13.
At 6:10 p.m. on September 23, 1991, a catastrophic rock avalanche occurred in Zhaotong, Yunnan, southwestern China. Over 216 people were killed when the Touzhai village was overwhelmed directly in the path of the landslide. The landslide involved the failure of about 12 Mm3 of jointed basaltic rock mass from the source area. The displaced materials ran out a horizontal distance of 3650 m over a vertical distance of 960 m, equivalent to a Fahrböschung of 14.7°, and covered an area of 1.38 km2. To provide information for hazard zonation of similar type of potential landslides in the same area, we used a dynamic model (DAN-W) with three alternative rheological models to simulate the runout behaviour of the displaced landslide materials and found that a combination of the frictional model and Voellmy model could provide the best performance in simulating this landslide. The simulated results indicated that the duration of the movement is estimated at about 175 s for a mean velocity 21 m/s.  相似文献   

14.
Haivan Station is an important station on the North-South railway line in central Vietnam. Field investigation has identified a precursor stage of a landslide that would threaten this railway. Therefore, a landslide susceptibility assessment for Haivan Station was urgently needed to protect passenger safety and the national railway. Conducted investigations included air-photo interpretation, drilling, ground water and inclinometer monitoring, laboratory testing, and landslide simulation. This research applied the undrained dynamic loading ring shear apparatus ICL-2 to drill-core samples from the precursor landslide. Samples for ring shear tests were taken from sandy soil layers found at depths of ~21, ~31, and ~50 m in the cores. Each of these was believed to be a possible sliding surface of a landslide, and all were tested to shear failure in the ICL-2 apparatus. The boundary between highly weathered granitic rock and weathered granitic rock was identified at about 50 m depth. The inclinometer monitoring detected slight movement at this depth. Therefore, the present day risk of a landslide forming at 50 m is higher than for one forming at either 21 or 31 m. The landslide dynamic parameters obtained from the ring shear test of the 50-m-deep sample were used in an integrated numerical simulation model LS-RAPID. The simulation result gave the critical pore-pressure ratio for landslide occurrence, and landslide’s likely maximum speed, total volume, and depth of landslide debris that could cover the railway. These estimates serve to raise awareness of the vulnerability of the Vietnam national railway sector to landslide impact.  相似文献   

15.
Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan   总被引:2,自引:2,他引:0  
This study focused on the landslide case at Su-Hua Highway 115.9k, Taiwan. A preliminary investigation was conducted on geomorphologic features change and landslide mechanisms using digital elevation models, geographical maps, and remote sensing images at different times in conjunction with geological surveys and analysis results. Using the results of geological surveys and physical model experiments, we constructed a discrete element method to simulate the process of landslide movement. The results revealed deformation in the metamorphic rock slopes upstream of 115.9k. The slopes around the erosion gully upstream presented visible slope toes cutting and tension cracks at the crest as well as unstable rock masses. According to the results of numerical simulation for typhoon Megi event, intense rains could induce slippage in the rock debris/masses in the source area, initially at a speed of 5–20 m/s. Subsequently, steeper terrain could cause the rock debris/masses to accelerate to form a high-speed (>30 m/s) debris slide quickly moving downstream to form an alluvial fan downstream by the sea.  相似文献   

16.
滑坡-涌浪灾害威胁沿河两岸居民生产生活安全和航道安全。当前尚缺乏同步提供流固两相运动矢量的相关物理试验分析系统,以深刻分析滑坡-涌浪产生机制。文章提出了基于流固两相识别的粒子图像测速(PIV)技术和试验实现方法。利用2560×1024像素的工业相机,该PIV技术可实现在3 m×1.5 m视窗下最小1.17 mm的空间分辨率和0.01 s内最小0.117 m/s的观测速度。同时,提出了与该系统方法有关的误差来源和克服相关问题的解决方法。利用相关硬件设施示范性构建了滑坡-涌浪两相运动观测平台,并编制了专门的解算软件。对三维柱体颗粒崩塌、二维柱体颗粒崩塌及其涌浪和水下崩塌-涌浪进行了展示性试验,取得了良好效果。该系统可以揭示广泛的岩土体及水体运动全过程,具有很好的应用前景;将为滑坡-涌浪及相关动力学领域研究提供强有力的研究工具。   相似文献   

17.
At this paper, we studied about the rock quality of Shirinrud dam site by engineering seismology. Shirinrud dam site is located 80 km far from Kerman and 18 km far from Hojadk village. The dam and its constructions are established in the Bidu Formation which consists of seven rock units, and the refraction profiles were surveyed on Jb3/2, Jb4, and Jb5 rock units. To evaluate the rock mass quality and basement topography at this site, nine refraction seismic profiles by primary waves and two refraction seismic profiles by secondary waves were surveyed. We used some methods such as Palmer method, the reciprocal method, plus–minus method, etc. to process and interpret data. Based on investigations, primary wave velocity in unit Jb3/2 varies between 2,100 and 2,200 m/s, in unit Jb4 is between 2,100 and 4,200 m/s, and in unit Jb5 is between 2,500 and 3,000 m/s. The Q values on these three units are 0.05, 1.2, and 1.9, and the rock mass rating (RMR) values are 27.1, 40.5, and 33.5, respectively. With respect to wave velocity, Q, and RMR values, the units Jb3/2, Jb4, and Jb5 are evaluated as very weak, intermediate, and weak, respectively.  相似文献   

18.
This paper proposes and demonstrates a two-layer depth-averaged model with non-hydrostatic pressure correction to simulate landslide-generated waves. Landslide (lower layer) and water (upper layer) motions are governed by the general shallow water equations derived from mass and momentum conservation laws. The landslide motion and wave generation/propagation are separately formulated, but they form a coupled system. Our model combines some features of the landslide analysis model DAN3D and the tsunami analysis model COMCOT and adds a non-hydrostatic pressure correction. We use the new model to simulate a 2007 rock avalanche-generated wave event at Chehalis Lake, British Columbia, Canada. The model results match both the observed distribution of the rock avalanche deposit in the lake and the wave run-up trimline along the shoreline. Sensitivity analyses demonstrate the importance of accounting for the non-hydrostatic dynamic pressure at the landslide-water interface, as well as the influence of the internal strength of the landslide on the size of the generated waves. Finally, we compare the numerical results of landslide-generated waves simulated with frictional and Voellmy rheologies. Similar maximum wave run-ups can be obtained using the two different rheologies, but the frictional model better reproduces the known limit of the rock avalanche deposit and is thus considered to yield the best overall results in this particular case.  相似文献   

19.
On 11 January 2013, a catastrophic landslide of ~0.2 million m3 due to a prolonged low-intensity rainfall occurred in Zhenxiong, Yunnan, southwestern China. This landslide destroyed the village of Zhaojiagou and killed 46 people in the distal part of its path. The displaced landslide material traveled a horizontal distance of ~800 m with a vertical drop of ~280 m and stopped at 1520 m a.s.l. To examine the possible mechanism and behavior of the landslide from initiation to runout, the shear behavior of soil samples collected from the sliding surface and runout path was examined by means of ring shear tests. The test results show that the shear strength of sample from the sliding surface is less affected by shear rate while the shear rate has a negative effect on the shear strength of runout path material. It is suggested that the source and runout path materials follow the frictional and Voellmy rheology, respectively. Post-failure behavior of the landslide was modeled by using a DAN-W model, and the numerical results show that the selected rheological relationships and parameters based on the results of ring shear tests may provide good performance in modeling the Zhenxiong landslide.  相似文献   

20.
This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock–debris avalanche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号