首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 906 毫秒
1.
利用精密单点定位程序对IGS站的实测数据进行计算,结果表明:平面方向,天线相位中心偏差和变化对精密单点定位精度影响较小;高程方向,天线相位中心偏差可造成厘米级的影响,天线相位中心变化的影响约5 mm;相比相对天线相位中心改正模型,使用绝对相位改正模型具有更多优点,尤其用于高精度GPS授时其精度明显提高.  相似文献   

2.
为建立北斗精密定轨接收机天线相位中心改正(phase center correction, PCC)模型最优化策略,首先对GPS的IGb R3和IGb 14标定值进行比较,两组模型值差异较小,表明在未提供北斗接收机天线IGb 14标定值的情况下采用IGb R3标定值代替具有可行性。进一步,设计PCC赋0、GPS L1/L2频点改正值代替、IGb R3标定值代替3组接收机PCC模型分析其对北斗精密定轨的影响。结果表明,接收机天线相位中心偏差(phas center offset, PCO)对精密定轨影响较大,对于北斗三号精密轨道,采用IGb R3模型的结果最优,其平均轨道拟合精度为3.4 cm;使用GPS的L1/L2代替值次之。最新框架下北斗接收机精确PCC模型公布前,推荐采用IGb R3值用于北斗三号精密轨道解算。  相似文献   

3.
介绍北斗二代卫星系统(BDS)3种卫星天线相位中心改正模型,分析对比不同模型对精密定轨、卫星钟差以及精密定位的影响。结果表明,ESA/ESOC的BDS卫星天线相位中心改正模型在精密定轨、卫星钟差和精密定位方面均优于其他模型结果,建议在北斗高精度数据处理中采用。  相似文献   

4.
基于实测数据分析天线相位中心PCO改正模型和观测值频点选择对北斗三号卫星精密定轨和定位的影响。结果表明,基于北斗官方CSNO发布的PCO模型定轨定位表现稍优于IGS协议模型。此外,相较于两者PCO模型差异的影响,B1C/B2a与B1I/B3I观测值频点的选择对精密定位影响更为显著。以IGS B1I/B3I PCO模型为参考,CSNO B1C/B2a PCO模型定位坐标在E、N、U方向上的精度分别提升约5%、13%、14%,可应用于北斗高精度数据处理。  相似文献   

5.
对SWARM卫星进行简化动力学精密定轨,估计接收机天线相位中心偏差(PCO),并基于所得到的载波相位残差对天线相位中心变化(PCV)误差进行建模,验证其对轨道精度的影响。结果表明,当使用PCO信息时,定轨精度改善明显,径向、切向和法向的RMS值分别提升47%、48%和66%;加入PCV模型后,3个方向的精度有mm级的提升。SLR检核结果显示,同时考虑PCO和PCV,SWARM三颗卫星的平均RMS值为2.29 cm,与事后科学轨道十分接近。对比不同分辨率PCV模型定轨的结果发现,选择5°×5°PCV模型较为合适。  相似文献   

6.
针对GNSS多模解算不仅可充分利用各系统优势,还能提高导航定位结果的精度和可靠性,但GPS/BDS之间未模型化的系统偏差将严重损害系统之间的兼容性与互操作性的情况。详细研究了BDS系统未模型化的天线相位中心偏差对解算结果的影响,并根据实测数据对推导的结论进行验证。结果表明,在本文的实验条件下,GPS与BDS之间确实存在较为显著的系统误差;消除天线相位中心偏差影响后,此系统偏差依然存在。  相似文献   

7.
对比不同分析中心发布的BDS姿态模型的差异发现,卫星机动时期不同分析中心发布的卫星偏航角差异可达近180°。进一步对比四元数姿态、模型姿态、名义姿态3种姿态策略对精密单点定位(PPP)中相位缠绕改正及最终定位结果的影响,结果表明,不同的姿态处理模型会带来近1周的相位缠绕改正差异,使用四元数姿态的仿动态PPP定位结果较名义姿态E、N、U方向的RMS分别减小17%、25%、34%,较模型姿态E、N、U方向的RMS分别减小11%、7%、7%。保持分析中心产品的一致性可以提高PPP精度。  相似文献   

8.
在分析参考站网各基线上对流层延迟信息性质的基础上,提出一种修正流动站对流层改正数高程方向偏差的方法,利用高程信息对流动站对流层改正数高程方向偏差进行修正。采用美国CORS网的6个参考站及香港SatRef网的7个站观测数据进行实验分析。结果表明,该方法能有效修正流动站对流层改正数在高程方向上的偏差,在100 m以上高程差异条件下取得良好效果,使对流层改正数精度维持在cm级。  相似文献   

9.
给出国家授时中心昊平站40 m口径射电天线相位中心参考点坐标的测量技术方案,包括GPS控制网布设、观测及解算,天线旋转中心的测定与曲线拟合以及天线旋转中心坐标到参考点坐标的转化等。精度分析表明,所得的天线相位中心参考点在CGCS2000坐标系下的点位精度优于8 mm。  相似文献   

10.
GPS卫星天线特性与相位中心一致性检定   总被引:2,自引:0,他引:2  
天线相位中心一致性的检测是GPS接收机检定工作中必不可少的内容。介绍了GPS卫星天线特性与微带天线相位中心变化模型.对天线相位中心的一致性检定原理及校准方法等进行了研究和探讨。  相似文献   

11.
基于武汉大学PANDA软件生成的GPS/GLONASS/BDS/Galileo四系统精密轨道和钟差产品,采用MGEX跟踪站多模观测数据进行试算,对GPS、GPS/BDS、GPS/GLONASS、GLONASS/BDS、GPS/GLONASS/BDS以及GPS/GLONASS/BDS/Galileo 7种模式的动态精密单点定位的精度和收敛性进行比较。结果表明:1)BDS动态PPP收敛速度较慢,收敛后精度能够达到cm级;2)GPS/BDS融合定位北方向分量精度不如GPS单系统定位,但东方向和高程方向分量收敛速度和定位精度都得到改善;GPS/GLONASS和GLONASS/BDS融合定位提高了东方向、北方向和高程方向分量的收敛速度和定位精度;3)GPS/GLONASS/BDS融合定位20 min即可收敛,收敛后平面精度优于1 cm,高程精度优于3 cm;Galileo的引入对收敛速度和定位精度的改善不明显。  相似文献   

12.
针对精密单点定位中多系统融合的问题,提出BDS/GPS/GLONASS 组合PPP的函数模型及随机模型,实现了基于扩展卡尔曼滤波的BDS/GPS/GLONASS 组合PPP。利用实测数据进行静态及静态模拟动态的BDS/GPS/GLONASS 组合PPP实验,结果表明:1)静态实验中,BDS PPP平均收敛时间约为80 min,水平方向精度优于3 cm,天向精度优于6 cm;GPS PPP与多系统组合PPP定位精度相当,且收敛时间与组合PPP所应用的各系统中收敛较快的单系统PPP的收敛时间相当;2)动态实验中,BDS PPP的平均收敛时间约为105 min,水平方向精度优于7 cm,天向精度优于12 cm;多系统组合PPP的精度要优于单系统PPP,且有效缩短了收敛时间。  相似文献   

13.
通过BDS/GPS/GLONASS组合的方式加速PPP的收敛,利用整数相位钟法实现GPS PPP模糊度的固定,并通过6个MGEX测站的数据进行PPP动态实验。结果表明,固定解的精度优于浮点解,而基于BDS/GPS/GLONASS融合的PPP固定解定位精度优于单GPS PPP固定解;GPS固定解PPP平均模糊度首次固定时间(TTFF)为46.1 min,而基于BDS/GPS/GLONASS融合的固定解PPP首次固定时间仅为25.8 min,相应的模糊度固定率也由78.6%增加到87.4%。  相似文献   

14.
针对BDS和GPS,采用全球分布的5个IGS测站数据和车载实验数据,使用精密卫星轨道和钟差产品,对比分析原始多普勒频移、载波相位导出多普勒频移、动态PPP三种测速方法的精度.在静态仿动态测速实验中,3种方法水平方向精度分别为10 mm/s、4 mm/s、5 mm/s;在动态车载实验中,导出多普勒测速和动态PPP参数法水...  相似文献   

15.
利用武汉大学发布的事后精密星历和5 min间隔的精密卫星钟差产品,运用北斗精密单点定位技术(BDS PPP)进行时间传递实验,实验数据采用甘肃省卫星定位连续运行基准站中4个站3 d的观测结果。为了验证BDS载波相位法(BDS CP)时间传递的精度,将其与GPS CP法进行对比。结果表明,BDS CP法与GPS CP法之差的RMS大约在±0.055 ns左右,而GPS CP法可以实现0.1~0.2 ns的时间传递,因此在亚ns量级上可以认为这两种方法的精度基本相当。  相似文献   

16.
基于自行解算的GPS/BDS精密轨道和钟差产品,选取全球均匀分布的9个MGEX观测站1周的观测数据,使用GAMP软件进行BDS静态精密单点定位(PPP)解算,以评估BDS全星座的全球定位服务能力及天顶对流层延迟(ZTD)的估计性能。实验结果表明,BDS静态PPP解算收敛后水平方向精度优于1 cm,高程方向精度在1 cm左右,定位精度已与GPS相当;其天顶对流层估计精度优于1 cm,与GPS PPP解算的ZTD误差的RMS值相差在1 mm以内。总体来说,BDS全星座已具备与GPS相当的全球定位服务能力和ZTD反演性能。  相似文献   

17.
首先采用国际上通用的德国地学中心(GFZ)与武汉大学(WHU)精密产品,对GNSS精密卫星轨道和精密钟差产品精度进行初步评估;然后基于WHU精密轨道和钟差产品对18个分布于东半球的MGEX地面站进行多系统定位测试,同时也对BDS的B1I/B3I与B1C/B2a两组新、旧频点的精密单点定位性能进行对比分析。结果表明:1)四大导航系统(GPS、GLONASS、BDS、Galileo)的卫星轨道产品精度均在cm级,精密钟差内符合精度均优于0.1 ns,北斗三号(BDS-3)卫星钟精度相比北斗二号(BDS-2)有显著提升。2)亚太地区BDS的定位精度优于其他3个系统;在其他地区,GPS定位精度最优(与Galileo基本相当),优于BDS和GLONASS的定位结果。3)BDS PPP平均收敛时间静态模式约为50.33 min、动态模式约为77.83 min,收敛速度略低于GPS、Galileo,优于GLONASS。4)B1C/B2a与B1I/B3I双频消电离层组合PPP定位性能基本相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号