首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The dramatic growth and evolution of the 2001 martian global dust storm were captured using the Submillimeter Wave Astronomy Satellite (SWAS). While the lower and middle atmosphere (pressures greater than 50 μbar, up to ∼45 km altitude) showed rapid heating of up to 40 K, the average surface brightness temperature plummeted by ∼20 K at the peak of the storm. The storm appears to have had little impact on the global temperature structure at altitudes above ∼ 10 μbar (∼ 60 km).  相似文献   

2.
Attila Elteto  Owen B. Toon 《Icarus》2010,210(2):566-588
We present a new parameter retrieval algorithm for Mars Global Surveyor Thermal Emission Spectrometer data. The algorithm uses Newtonian first-order sensitivity functions of the infrared spectrum in response to variations in physical parameters to fit a model spectrum to the data at 499, 1099, and 1301 cm−1. The algorithm iteratively fits the model spectrum to data to simultaneously retrieve dust extinction optical depth, effective radius, and surface temperature. There are several sources of uncertainty in the results. The assumed dust vertical distribution can introduce errors in retrieved optical depth of a few tens of percent. The assumed dust optical constants can introduce errors in both optical depth and effective radius, although the systematic nature of these errors will not affect retrieval of trends in these parameters. The algorithm does not include the spectral signature of water ice, and hence data needs to be filtered against this parameter before the algorithm is applied. The algorithm also needs sufficient dust spectral signature, and hence surface-to-atmosphere temperature contrast, to successfully retrieve the parameters. After the application of data filters the algorithm is both relatively accurate and very fast, successfully retrieving parameters, as well as meaningful parameter variability and trends from tens of thousands of individual spectra on a global scale (Elteto, A., Toon, O.B. [2010]. Icarus, this issue). Our results for optical depth compare well with TES archive values when corrected by the single scattering albedo. Our results are on average 1–4 K higher in surface temperatures from the TES archive values, with greater differences at higher optical depths. Our retrieval of dust effective radii compare well with the retrievals of Wolff and Clancy (Wolff, M.J., Clancy, R.T. [2003]. J. Geophys. Res. 108 (E9), 5097) for the corresponding data selections from the same orbits.  相似文献   

3.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

4.
Bruce A. Cantor 《Icarus》2007,186(1):60-96
From 15 September 1997 through 21 January 2006, only a single planet-encircling martian dust storm was observed by MGS-MOC. The onset of the storm occurred on 26 June 2001 (Ls=184.7°), earliest recorded to date. It was initiated in the southern mid-to-low latitudes by a series of local dust storm pulses that developed along the seasonal cap edge in Malea and in Hellas basin (Ls=176.2°-184.4°). The initial expansion of the storm, though asymmetric, was very rapid in all directions (3-32 m s−1). The main direction of propagation, however, was to the east, with the storm becoming planet encircling in the southern hemisphere on Ls=192.3°. Several distinct centers of active dust lifting were associated with the storm, with the longest persisting for 86 sols (Syria-Claritas). These regional storms helped generate and sustain a dust cloud (“haze”), which reached an altitude of about 60 km and a peak opacity of τdust∼5.0. By Ls=197.0°, the cloud had encircled the entire planet between 59.0° S and 60.0° N, obscuring all but the largest volcanoes. The decay phase began around Ls∼200.4° with atmospheric dust concentrations returning to nominal seasonal low-levels at Ls∼304.0°. Exponential decay time constants ranged from 30-117 sols. The storm caused substantial regional albedo changes (darkening and brightening) as a result of the redistribution (removal and deposition) of a thin veneer of surface dust at least 0.1-11.1 μm thick. It also caused changes in meteorological phenomena (i.e., dust storms, dust devils, clouds, recession of the polar caps, and possibly surface temperatures) that persisted for just a few weeks to more than a single Mars year. The redistribution of dust by large annual regional storms might help explain the long period (∼30 years) between the largest planet-encircling dust storms events.  相似文献   

5.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

6.
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion.  相似文献   

7.
L. Montabone  S.R. Lewis  D.P. Hinson 《Icarus》2006,185(1):113-132
We describe an assimilation of thermal profiles below about 40 km altitude and total dust opacities into a general circulation model (GCM) of the martian atmosphere. The data were provided by the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS) spacecraft. The results of the assimilation are verified against an independent source of contemporaneous data represented by radio occultation measurements with an ultra-stable radio oscillator, also aboard MGS. This paper describes a comparison between temperature profiles retrieved by the radio occultation experiments and the corresponding profiles given by both an independent, carefully tuned GCM simulation and by an assimilation of TES observations performed over the period of time from middle, northern summer in martian year 24, corresponding to May 1999, until late, northern spring in martian year 27, corresponding to August 2004. This study shows that the assimilation of TES measurements improves the overall agreement between radio occultation observations and the GCM analysis, in particular below 20 km altitude, where the radio occultation measurements are known to be most accurate. Discrepancies still remain, mostly during the global dust storm of year 2001 and at latitudes around 60° N in northern winter-early spring. These are the periods of time and locations, however, for which discrepancies between TES and radio occultation profiles are also shown to be the largest. Finally, a further direct validation is performed, comparing stationary waves at selected latitudes and time of year. Apart from biases at high latitudes in winter time, data assimilation is able to represent the correct wave behaviour, which is one major objective for martian assimilation.  相似文献   

8.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

9.
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.  相似文献   

10.
Edwin S. Barker 《Icarus》1976,28(2):247-268
The patrol of Martian water vapor carried out with the echelle-coudé scanner at McDonald Observatory during the 1972–1974 apparition has produced 469 individual photoelectric scans of Doppler-shifted Martian H2O lines. Almost an entire Martian year was covered during the 1972–1974 period (Ls = 118?269° and 301?80°). Three types of coverage have been obtained: (1) regular—the slit placed pole to pole on the central meridian; (2) latitudinal—the slit placed parallel to the Martian equator at various latitudes; (3) diurnal—the slit placed parallel to the terminator at several times during a Martian day measured from local noon.Both the seasonal and diurnal effects seem to be controlled by the insolation and not the local topography with respect to the 6.1 mb surface. A slight negative correlation with elevation was noted which improved during the seasons of greater H2O content. The previous seasonal behavior has been confirmed and amplified. The following are the primary conclusions: (1) The planetwide abundance is low (5?15 μm of ppt H2O) during both equinoctical periods. (2) The maximum abundance of about 40 μm occurs in each hemisphere after solstice at about 40° latitude in that hemisphere. (3) The latitude of the maximum amount in the N-S distribution precedes the latitude of maximum insolation by 10–20° of latitude. (4) During the “drier” seasons (5–20 μm) near the equinoxes on Mars, the atmospheric water vapor changes by a factor of 2–3x over a diurnal cycle with the maximum near local noon. (5) The effects of the 1973 dust storm during the southern summer reduced the amount of water vapor over the southern hemisphere regions to 3–8 μm.  相似文献   

11.
The recent detection of up to ∼10 wt% water-equivalent H heterogeneously distributed in the upper meter of the equatorial regions of the martian surface and the presence of the 3-μm hydrations feature across the entire planet raises the question whether martian surficial dust can account for this water-equivalent H. We have investigated the H2O and CO2 adsorption properties of palagonitic dust (<5 μm size fraction of phyllosilicate-poor palagonitic tephra HWMK919) as a martian dust analog and two smectites under simulated martian equatorial surface conditions. Our results show that the palagonitic dust, which contains hydrated and hydroxylated volcanic glass of basaltic composition, accommodates significantly more H2O under comparable humidity and temperature conditions than do the smectites nontronite and montmorillonite.  相似文献   

12.
In this paper, the dust event on 7 April 2001 in northern China is investigated with three MODIS thermal infrared (IR) bands. It is found that for the dust cloud, the observed 11 μm minus 12 μm brightness temperature difference (BTD) is always negative, while the BTD of 8.5 μm minus 11 μm varies from positive to negative depending on the dust concentration. Based on these distinguishing properties, we develop a dust mask algorithm to identify the dust storm occurrence and spatial extent. The algorithm can be used successfully in both the daytime and nighttime. Using the Mie spherical scattering theory, the thermal radiation transfer through the single dust layer is performed with the widely used forward model DISTORT. Our calculations show that the dust-like aerosols can well explain the observed BTD although both of the complex refractive index and particle size of aerosols will significantly influence the BTD. When the complex refractive index is fixed (dust-like aerosols in this paper), then the dust optical thickness and effective radii of dust particles can be retrieved from the brightness temperature (BT) of the 11 μm channel and the BTD of 11 μm minus 12 μm channels, respectively. The integral dust column density can also be derived from the retrieved dust optical thickness and effective radius.  相似文献   

13.
A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.  相似文献   

14.
A semiquantitative analysis of clearing in the 1971 great dust storm on Mars is presented as a function of time and altitude, using Mariner 9 orange- and visual-light photos. Steady settling of dust approximately accounts for the decline of the storm after December 22, 1971. Continuous settling cannot be invoked prior to that date; injection of dust into the atmosphere, i.e., a storm resurgence, occurred in mid-December 1971. Theoretical models of optical depth versus time are developed for various distributions of particles in the atmosphere. By intespreting settling in terms of Stokes' law, estimates of the maximum radii of dust particles throughout the atmosphere have been obtained. Models which best account for the dust-storm decline indicate particles ? 5μm in diameter high in the atmosphere, with a concentration of larger particles (? 10μm) near the ground in the lowest parts of Mars. Long-term thin high hazes should persist through much of the Martian year, perhaps clearing before perihelion.  相似文献   

15.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

16.
Richard W. Zurek 《Icarus》1981,45(1):202-215
A δ-Eddington radiative transfer algorithm is used to compute the thermal tidal heating of a dusty Martian atmosphere for a given set of dust optical depth, effective single scattering albedo, and phase function asymmetry parameter. The resulting thermal tidal forcing is used in a classical atmospheric tidal model to compute the amplitudes of the surface pressure oscillations at the Viking Lander 1 site for the two 1977 Martian great dust storms. Parametric studies show that the dust opacities and optical parameters derived from the Viking Lander imaging data are roughly representative of the global dust haze needed to reproduce the tidal surface pressure amplitudes also observed at Lander 1, except that the model-inferred asymmetry parameter is smaller during the onset of a great storm. The observed preferential enhancement during dust-storm onset of the semidiurnal tide at Viking Lander 1 relative to its diurnal counterpart is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere, although resonant enhancement of the main semidiurnal tidal mode makes an important secondary contribution.  相似文献   

17.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   

18.
Previous calculations of the surface wind stress required to raise dust on Mars are reconsidered and the threshold friction velocity is found to be about 2.0 m sec?1 with particles of 200–300 μm being the most easily lifted. With this friction velocity, the planetary resistance law yields a corresponding wind at the top of the Ekman layer of 60 m sec?1, and the logarithmic wind law yields a corresponding wind at the top of the Prandtl layer of 38 m sec?1. These speeds are somewhat lower than those used by previous investigators.Various mechanisms for producing such strong winds are examined and it is concluded that the general circulation, thermal effects of topography, mechanical effects of topography and dust devils are all capable of doing so.Dust storms associated with small-scale disturbances are found to be incapable of growth. A scaling analysis of the equations of horizontal motion and of hydrostatic balance shows that a dust cloud at least 10 km thick and several tens of km in radius can, by absorption of sunlight, generate temperature gradients that, in turn, produce winds capable of raising more dust. Thus, a feedback mechanism is suggested in which an initial dust cloud exceeding certain critical dimensions can grown to planetary size. The preference of large dust storms to occur at southern hemisphere summer solstice is attributed to the maximum of insolation at that time. It is suggested that the frequent origin in the Noachis-Hellas region may be due to orographic features of the right scale and to low height in that area.  相似文献   

19.
We report the detection of Comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 μm Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size ?100 μm. The neck-line is composed of similar sized particles, but younger in age. Together, our observations and simulations suggest grains 100 μm and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87±0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (∼10−3) of a trail grain impacting with Rosetta during approach and orbit insertion.  相似文献   

20.
Kevin Pang  Charles W. Hord 《Icarus》1973,18(3):481-488
The Mariner 9 ultraviolet spectrometer observed the brightness of a region on the south polar cap centered at approximately ?87°S, 10°W. Measurements taken at various incidence and emission angles (i and ?) show that the brightness increased with decreasing air mass, ≈(sec i + sec ?). The observed intensity consists primarily of a component reflected from the cap and twice-attenuated by the atmosphere and a component diffusely reflected from the atmosphere. The diffusely reflected component was determined from nearby observations of non-polar regions at the same incidence and emission angles and was substrated from the total intensity. Inversion of the intensity difference using a formula analogous to the Bouger-Langley law yielded the optical thickness of the atmosphere. The dust cloud over the polar cap was moderately thick between November 26 and December 2, 1971. At this time the optical thickness was near unity, and it decreased approximately linearly with time, reaching a value close to that of a Rayleigh atmosphere by mid-February. The optical thickness showed little dependence on the wavelength during the early orbital observations. As the dust storm cleared, the atmospheric optical thickness exhibited increasingly strong inverse wavelength dependence. Particles large compared with the wavelength dominated the Martian dust storm. These particles are estimated to have a mean radius of about 2 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号