首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两层正压准平衡海洋模型的中纬度定常风场强迫解   总被引:2,自引:2,他引:0  
建立了风场强迫下考虑瑞利摩擦的水平二维两层正压准平衡海洋模型,并在中纬度大尺度理想风场强迫的情况下,进行了解析求解。结果表明,在西风急流强迫下,在理想海洋的西海岸以东的上层流场上,在西风急流处会出现较强的东向流;在接近β通道侧壁处则有西向逆流出现;在近西海岸处,在上述东向流的两侧有气旋性曲率与反气旋性曲率的流动;而下层流场的强度与上层流场大致相同,但流向大体相反。由理想西风急流异常强迫出的流场异常的分布形式与以上结果类似。与实际风场异常强迫下的北太平洋上层流场异常进行比较后可知,模型得到上层海洋的结果与实际情况有相像之处。最终,该海洋模型的解趋于风场强迫特解。  相似文献   

2.
Based on diagnostic analysis of reanalysis data for 58-year,the distribution characteristics of decadal variability in diabatic heating,transient eddy heating and transient eddy vorticity forcing related to the sea surface temperature(SST)anomalies over the North Pacific,as well as their relationship with anomalous atmospheric circulation have been investigated in this paper.A linear baroclinic model(LBM)was used to investigate atmospheric responses to idealized and realistic heat and vorticity forcing anomalies,and then to compare relative roles of different kinds of forcing in terms of geopotential height responses.The results illustrate that the responses of atmospheric height fields to the mid-latitude heating can be either baroclinic or barotropic.The response structure is sensitive to the relative horizontal location of heating with respect to the background jet flow,as well as to the vertical profile of heating.The response to the idealized deep heating over the eastern North Pacific,mimicking the observed heating anomaly,is baroclinic.The atmospheric response to the mid-latitude vorticity forcing is always barotropic,resulting in a geopotential low that is in phase with the forcing.The atmospheric responses to the realistic heat and vorticity forcing show the similar results,suggesting that diabatic heating,transient eddy heating and transient eddy vorticity forcing can all cause atmospheric anomalies and that the vorticity forcing plays a relatively more important role in maintaining the equivalent-barotropic structure of geopotential height anomalies.  相似文献   

3.
Based on diagnostic analysis of reanalysis data for 58-year, the distribution characteristics of decadal variability in diabatic heating, transient eddy heating and transient eddy vorticity forcing related to the sea surface temperature (SST) anomalies over the North Pacific, as well as their relationship with anomalous atmospheric circulation have been investigated in this paper. A linear baroclinic model(LBM) was used to investigate atmospheric responses to idealized and realistic heat and vorticity forcing anomalies, and then to compare relative roles of different kinds of forcing in terms of geopotential height responses. The results illustrate that the responses of atmospheric height fields to the mid-latitude heating can be either baroclinic or barotropic. The response structure is sensitive to the relative horizontal location of heating with respect to the background jet flow, as well as to the vertical profile of heating. The response to the idealized deep heating over the eastern North Pacific, mimicking the observed heating anomaly, is baroclinic. The atmospheric response to the mid-latitude vorticity forcing is always barotropic, resulting in a geopotential low that is in phase with the forcing. The atmospheric responses to the realistic heat and vorticity forcing show the similar results, suggesting that diabatic heating, transient eddy heating and transient eddy vorticity forcing can all cause atmospheric anomalies and that the vorticity forcing plays a relatively more important role in maintaining the equivalent-barotropic structure of geopotential height anomalies.  相似文献   

4.
A series of numerical simulations of steady wave flows in a rotating fluid annulus, subject to internal heating and various thermal boundary conditions, is examined to characterise their structures, energetics and potential vorticity transport properties. The last of these characteristics, together with more conventional scaling considerations, indicate the possibility of applying quasi-geostrophic theory to the interior flow in a formulation similar to the inviscid, adiabatic models of Kuo and White.The analytical model of White, describing finite amplitude, neutral baroclinic eddies and mean flows as illustrations of the Charney-Drazin non-acceleration theorem, is then extended to include uniform diabatic heating and the effects of different forms of lateral shear in the background mean zonal flow. Like the solutions discussed by White, those obtained in the present paper consist of steady, internal jet, mean zonal flows, and baroclinic and barotropic Rossby wave components, all having the same three-dimensional wavenumber. Provided the diabatic heating is proportional to the stratification of the background flow, measured by the square of the Brunt-Vaisälä frequency N, the potential vorticity equation remains homogeneous. All the solutions are then characterised by zero net transfer of potential vorticity despite the possibility of non-zero eddy fluxes of heat or momentum and non-trivial Lorenz energy cycles.A series of particular three-component solutions (which, like some of the solutions discussed by White, do not obey conventional lateral boundary conditions) is examined as possible theoretical analogues of the steady waves observed in the numerical simulations of the laboratory flows, and is found to agree encouragingly well in the spatial variations of their mean flows, eddy stream function (pressure) and eddy fluxes of heat and momentum. Potential vorticity fluxes in the numerical simulations are relatively small (though crucially non-zero), supporting the possible analogy with the analytical model and exposing some limitations of the latter in not accounting for weak dissipation and forcing processes present in the laboratory flows.Further implications of the results are discussed, including possible analogies between the laboratory experiments and certain features in planetary atmospheres and oceans.  相似文献   

5.
In this paper,Eliassen-Palm theory and associated diagnostic method are used to discuss the dynamicalmechanism of the interaction between eddy flux and zonal averaged flow in the sudden change of the generalcirculation in the Northern Hemisphere in early summer of 1982,which indicates that the northward jump ofsubtropic jet stream is closely related to the enhanced transport of mid-latitude eddy energy to the subtropic tro-popause.However,the direction of the transport is conditioned by the structure of zonal averaged flow.It isevident that the adjustment of zonal averaged flow responses quickly to the eddy transport during this episode.As regard to the suddenness of the change of circulation,the critical role is played by the eddy forcing,  相似文献   

6.
The role of mesoscale oceanic eddies in driving the large-scale currents is studied in an eddy-resolving, double-gyre ocean model. The new diagnostic method is proposed, which is based on dynamical decomposition of the flow into the large-scale and eddy components. The method yields the time history of the eddy forcing, which can be used as additional, external forcing in the corresponding non-eddy-resolving model of the gyres. The main strength of this approach is in its dynamical consistency: the non-eddy-resolving solution driven by the eddy forcing history correctly approximates the original large-scale flow component. It is shown that statistical decompositions, which are based on space-time filtering diagnostics, are dynamically inconsistent. The diagnostics algorithm is formulated and tested, and the diagnosed eddies are analysed, both statistically and dynamically. It is argued that the main dynamic role of the eddies is to maintain the eastward-jet extension of the subtropical western boundary current (WBC). This is done largely by both the time–mean isopycnal-thickness flux and the relative-vorticity eddy flux fluctuations. The fluctuations drive large-scale flow through the nonlinear rectification mechanism. The relative-vorticity flux contributes mostly to the eastward jet meandering. Finally, eddy fluxes driven by both the eddies and the large-scale flow are found to be important. The latter is typically neglected in the analysis, but here it corresponds to important large-scale feedback on the eddies.  相似文献   

7.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

8.
Even in idealized models of steady, dissipating, non-breaking Rossby waves at small wave amplitude, and even in the absence of barotropic and baroclinic shear instabilities, there can be an anomalous Eliassen-Palm flux divergence in the sense that the divergence is positive when the background potential-vorticity gradient is also positive, implying upgradient eddy potential-vorticity transport. The phenomenon is illustrated in the simplest possible case of dissipation by Rayleigh friction and Newtonian cooling, and is shown by a more general argument not to be restricted to that case. The physical reason is that infrared radiative damping can act anti-dissipatively on potential-vorticity anomalies whenever the vertical disturbance structure is diffractive or evanescent, as with most real stratospheric synoptic and sub-synoptic-scale disturbances forced from below. Associated with this phenomenon are anomalous (eastward) phase tilts with height, and equatorward transformed Eulerian-mean (TEM) meridional velocities. It is pointed out that the latter is a clearcut example of a TEM circulation whose sense is opposite to that of the generalized Lagrangian-mean circulation (and the effective transport circulation in the sense of Plumb and Mahlman) induced by the same steady, small-amplitude disturbance.  相似文献   

9.
In this study, we investigate the interaction between the tropical Intraseasonal Oscillation (ISO) and midlatitude atmospheric low-frequency variability, using observational data and numerical models, with a special emphasis on the role of the synoptic eddy feedback. A statistical closure for the synoptic eddy-to-low frequency flow feedback is constructed, based on a singular value decomposition (SVD) method with observational data. Applying this statistical closure to a barotropic model and a baroclinic 2½-layer model, we study the role of the synoptic eddy feedback in the midlatitude response to the tropical ISO forcing. Both observational and modeling studies show that the strongest synoptic eddy forcing appears at the Pacific and Atlantic storm-track regions, and the synoptic eddy exerts a positive feedback to the midlatitude low-frequency flow induced by tropical ISO forcing. Our numerical experiments demonstrate the possible role of midlatitude disturbance forcing in the ISO initiation at the equator. The signal of the midlatitude perturbations propagates southeastward in the form of a Rossby wave package. It may reach the equator within several days under either easterly or westerly basic flow regimes. The response at the equator has observed ISO-like structure and eastward propagation characteristics.  相似文献   

10.
Large-scale instabilities of mid-latitude jets (with continuous horizontal and vertical shear) are studied using a long wave approximation, which is valid for disturbances of length scales greater than the internal Rossby radius of deformation. These large-scale instabilities are abundant in the Kuroshio Extension according to observations. Results show westward propagation if the total transport is westward (although the jet near surface is eastward). Large-scale instabilities gain energy from the release of available potential energy, but lose part of the gain to the mean flow by reinforcing the eastward jet near surface. The Reynolds stress tends to be positive north of the jet and negative south of the jet through all depths, which is consistent with observations.  相似文献   

11.
谭本馗  伍荣生 《大气科学》1995,19(3):289-300
本文讨论了强迫和耗散对Rossby包络孤立波的影响,得到了在强迫和耗散共同作用下,当准共振条件和锁相条件满足时,包络孤立波从外场那里获取能量来克服耗散并形成稳定的锁相包络孤立波。本文还研究了在强迫和耗散作用下两个包络孤立波的碰撞相互作用,发现在某些参数下,两波碰撞后性质变化不大,而在另外一些参数下,碰撞后两波性质显著改变。  相似文献   

12.
Summary A nonlinear, forced, dissipative quasi-geostrophic, two-level -plane model of baroclinic instability is formulated. The model resolves a baroclinic zonal flow and a wave of arbitrary zonal scale. Multiple equilibrium solutions describing Hadley and eddy circulations coexist. Only the circulation with smaller thermal wind is stable. The most efficient eddy activity occurs at a zonal wavenumber close to the wavelength of maximum instability of linear baroclinic instability theory. For a wide range of forcing and dissipative parameters, the steady baroclinic zonal wind of the eddy regime is close to the critical shear of linear theory. Eddy statistics are obtained analytically in terms of the doparture of the zonally symmetric state from radiative equilibrium. A parameterization for the eddy heat transport is obtained.With 14 Figures  相似文献   

13.
The evolution and structure of a steady barotropic nocturnal boundary layer are investigated using a higher-order turbulence closure model which includes equations for the mean quantities, turbulence convariances, and the viscous dissipation rate. The results indicate that a quasi-steady nocturnal PBL might be established in 4–10 hours after transition, depending on surface cooling rate. The latter is assumed to be constant in the model. The emphasis is on prediction of eddy viscosity, nocturnal mixing-layer depth, and the stability-dependent universal functions in the geostrophic drag and heat transfer relations. The model predictions are parameterized in the framework of the PBL similarity theory and compared with observations and results of other models.Affiliation with Oak Ridge Associated Universities (ORAU).  相似文献   

14.
Symmetry properties of steady solutions of the barotropic quasigeostrophic vorticity equation are explored using mirror reflections with respect to mid-basin longitude and latitude. The analysis is conducted by perturbing the fully inertial solution, the zeroth-order solution or the Fofonoff mode, by introducing forcing and dissipation as a first order correction. In the context of a classical square-basin and single-gyre circulation subject to bottom friction, it is shown numerically and analytically that the full solution can be approximated by the superposition of three components each having definite symmetry properties under longitude and latitude reflections: the north–south symmetric and antisymmetric components of the zeroth-order solution and the east–west antisymmetric component of the first-order correction. The flow patterns of the individual components are discussed.  相似文献   

15.
1998年夏第二阶段梅雨期乌拉尔山阻塞形势的维持   总被引:7,自引:1,他引:7  
1998年夏季长江流域发生了近50年来最严重的洪水。洪水形成最直接、最主要的原因是梅雨异常。异常梅雨的形成与东亚夏季风偏弱及热带外环流持续异常有关,其中一个明显特征是乌拉尔山地区长时间维持阻塞形势。本文结合诊断分析和数值试验,从瞬变对基本流的强迫(大气内部强迫)及热带热源强迫(外源强迫)两方面,分析了与第二段梅雨相对应的乌拉尔长时间阻塞的维持机制。利用共轭敏感性分析方法,计算了最有利于乌拉尔阻塞发展和维持的敏感扰动,发现扰动的分布位置,刚好与观测到的,从东大西洋到欧洲区域的异常增强的瞬变活动区相重叠。E矢量及斜压线性静止波模式的诊断进一步表明,异常期间的增强瞬变活动有利于乌拉尔出现正高度异常。计算了持续异常期间的高空急流及大气加热场,发现北美到大西洋的高空急流及热带加热都出现明显异常。中期天气预报模式 IAP T42L9的集合预报试验表明,热带地区的加热异常,尤其是热带中西太平洋和大西洋的加热异常,有利于乌拉尔正高度异常的形成。最后,提出了一种热带异常热源驱动下,瞬变波与定常波双向相互作用的阻塞形成与自维持的可能机制。  相似文献   

16.
用数值试验的方法,应用强迫耗散准地转正压涡度方程的全球谱模式,在方程中考虑了偶(单)极子的热力强迫作用,并在三个行星波准共振的条件下,模式共积分90d,得到:在偶、单极强迫热源和基本气流强度的共同作用下,三个行星波之间存在很强的波.波相互作用,且波动振荡呈现准双周和季节内振荡。同时偶、单极强迫源及基本气流的强度变化对中高纬大气的低频振荡调制作用不同。在准共振三波流函数场随时间变化的试验结果中,进一步证实了中高纬大气存在较好的低频振荡。  相似文献   

17.
A study is made of the paths of tropical cyclones under the joint action of environmental flow and heating fields in terms of a quasi-geostrophic barotropic model with the thermal forcing and dissipation terms involved,in which 16 experiments are designed and integrated for more than 7 model days.Results show that for different parameter values of the environmental flow and heating field,and the cyclone scale,such paths as counterclockwise looping,zigzag form and westward march with an abrupt turning towards the north are reproduced clearly in the model atmosphere,exhibiting their critical points of nonlinear character.  相似文献   

18.
在中纬度北太平洋大气强斜压区,存在频繁的天气尺度涡旋活动,通过水分、动量和能量输送维持大气环流。为了进一步研究天气尺度涡旋发生发展与大尺度环流之间的联系,利用1981—2013年再分析资料,筛选出西部发展型天气尺度涡旋114个偏强日和87个偏弱日,给出了西部发展型天气尺度涡旋异常导致的动力和热力强迫的变化,同时从能量转换的角度分析了西部发展型天气尺度涡旋与平均流之间的相互作用,并探讨了其与西太平洋遥相关型的关系。结果表明:西部发展型天气尺度涡旋通过动力强迫和热力强迫影响平均流,其中动力强迫主要造成北太平洋中纬度上空的西风气流加速并向北移动;热力强迫的作用则是减弱中纬度大气斜压性。同时,强西部发展型天气尺度涡旋有利于西北太平洋上空对流层低层斜压有效位能向扰动动能的转化增大和扰动动能向平均流的转化增大,有利于中纬度地区对流层高层平均流向扰动动能的转化增大。此外,西部发展型天气尺度涡旋通过与平均流的作用,对维持西太平洋遥相关型的负位相有一定影响。  相似文献   

19.
This paper investigates the dynamics of mesoscale eddy generation by instability of time-varying flows. Laboratory experiments on oscillatory motion over topography in a rapidly rotating cylinder have shown that isolated mesoscale eddies, which form in the sidewall boundary layer during certain phases of the forcing cycle, are associated with the onset of chaotic behavior in this system. This paper explores the origin of these eddies by performing computational simulations of the flow, and then interpreting the results of the calculations using spatially localized and quasi-static linear stability theory. For most of the experimental parameter space the quasi-geostrophic simulations are in excellent agreement with the laboratory observations. The eddies arise as a barotropic shear flow instability in regions of space and at times where the inflection points of the instantaneous large-scale flow are farthest from the sidewall, and where Fjortoft's theorem is strongly satisfied. At finite amplitude, advection of the local wavetrains up the bottom slope strengthens the anticyclonic eddies. These then merge, leading in most circumstances to a single strong anticyclonic vortex that can leave the sidewall and penetrate the interior. When parameters are such that the eddy persists all the way around the basin and back to the local instability region, the flow is observed to become chaotic.  相似文献   

20.
非均匀风场与急流强迫的水体涡旋动力特征模拟   总被引:1,自引:1,他引:0  
通过数值模拟有限区域水气界面由强迫作用驱动形成的水体涡旋及环流动力结构特征,分析非均匀风场、水体急流、两者叠加以及环境边界和地转偏向力等因子的综合影响,探讨此类水体涡旋结构和动力特征。风应力驱动的水体涡旋尺度大,相对深厚,正涡旋具有下凹表面,负涡旋具有上凸表面。水体急流驱动的涡旋形成在急流两侧,对应急流所在深度及厚度尺度相对较小,也较浅,但流速与强度均大于风场驱动的涡旋环流。地形阻挡起着引导涡旋环流走向的作用;同时在北半球地转偏向力对急流侧向负涡旋形成和强度增强更为有利。此外正涡旋对应的辐合辐散势函数强于负涡旋,有利于正涡旋区垂直上升运动强于负涡旋中垂直下沉运动。非均匀风场及水体急流两种强迫叠加作用下,涡旋数量增加、尺度减小,底层的流场形态及强度与表层差异增大。形成的水体涡旋结构呈现多种形态:深厚的整层一致;浅薄的仅维持在上层,或上下层环流相反等。风应力驱动的涡旋以正压性为主,水体急流驱动的涡旋因急流的垂直强切变而具有强的斜压性,在正斜压动能的转换中,正压性涡旋区有斜压动能向正压动能转换,斜压性涡旋区有正压动能向斜压动能转换,均有利于这两个区域正负涡旋的维持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号