首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loess and dune sands that mantle volcanic rocks on the northwest flank of Mauna Kea volcano consist predominantly of fine-grained pyroclasts of the alkalic Laupahoehoe Volcanics produced by explosive eruptions. The loess is divided into lower and upper units, separated by a well-developed paleosol, while older and younger dune sands are separated by loess. Four interstratified tephra marker horizons aid in regional stratigraphic correlation. Radiocarbon ages of charcoal fragments within the loess, U-series ages of rhizoliths in the dune sand, and K/Ar ages and relative stratigraphic positions of lava flows provide a stratigraphic and temporal framework. The lower loess overlies lava flows less than 103,000 ± 10,000 K/Ar yr old, and14C dates from the paleosol developed at its top average ca. 48,000 yr. Loess separating the dune sand units ranges from ca. 38,000 to 25,00014C yr old; the youngest ages from the upper loess are 17,000–18,00014C yr B.P. Dips of sand-dune foreset strata, isopachs on the upper loess, and reconstructed isopachs representing cumulative thickness of tephra associated with late-Pleistocene pyroclastic eruptions suggest that vents upslope (upwind) from the sand dunes were the primary source of the eolian sediments. Average paleowind directions during the eruptive interval (ca. 50,000–15,000 yr B.P.), inferred from cinder-cone asymmetry, distribution of tephra units, orientation of dune foreset strata, and the regional pattern of loess isopachs, suggest that Mauna Kea has remained within the trade-wind belt since before the last glaciation.  相似文献   

2.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

3.
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
5.
An extensive stratigraphic section at Cape Alfred Ernest on the Wootton Peninsula, northwest Ellesmere Island contains six lithofacies which appear to record two glacial phases separated by an organic layer. (1) A lower massive gravel records a pre-ice advance outwash phase; (2) massive fine-grained sediments record a period of non-glacial marine deposition when sea-level was higher than present; (3) a massive diamicton records the advance of ice across the site; (4) intermediate stratified beds record supraglacial and proglacial outwash, and include an organic layer; (5) massive diamicton grading down-valley to stratified diamicton and then massive, sheared diamicton, overlain by laminated fine-grained sediments with dropstones, recording the last (late Wisconsinan) glaciation; (6) upward-coarsening sands and gravels record proglacial outwash and grade to raised marine deltas. Radiocarbon dates of 39270 ± 640 and > 51000 yr BP were obtained on samples from the organic layer by accelerator mass spectrometry and conventional radiocarbon dating, respectively. Palaeoecological data suggest that the organics accumulated in a wet sedge meadow environment when the climate was warmer than present. Stratigraphic considerations suggest that the organic layer represents an interglacial interval which, if valid, indicates that the site constitutes the northernmost interglacial stratigraphy in the Canadian Arctic. Alternatively, the organic layer may date to Plio-Pleistocene times.  相似文献   

6.
Large glaciers descended western valleys of the Olympic Mountains six times during the last (Wisconsin) glaciation, terminating in the Pacific coastal lowlands. The glaciers constructed extensive landforms and thick stratigraphic sequences, which commonly contain wood and other organic detritus. The organic material, coupled with stratigraphic data, provides a detailed radiocarbon chronology of late Pleistocene ice-margin fluctuations. The early Wisconsin Lyman Rapids advance, which terminated prior to ca. 54,000 14C yr B.P., represented the most extensive ice cover. Subsequent glacier expansions included the Hoh Oxbow 1 advance, which commenced between ca. 42,000 and 35,000 14C yr B.P.; the Hoh Oxbow 2 advance, ca. 30,800 to 26,300 14C yr B.P.; the Hoh Oxbow 3 advance, ca. 22,000–19,300 14C yr B.P.; the Twin Creeks 1 advance, 19,100–18,300 14C yr B.P.; and the subsequent, undated Twin Creeks 2 advance. The Hoh Oxbow 2 advance represents the greatest ice extent of the last 50,000 yr, with the glacier extending 22 km further downvalley than during the Twin Creeks 1 advance, which is correlative with the global last glacial maximum. Local pollen data indicate intensified summer cooling during successive stadial events. Because ice extent was diminished during colder stadial events, precipitation—not summer temperature—influenced the magnitude of glaciation most strongly. Regional aridity, independently documented by extensive pollen evidence, limited ice extent during the last glacial maximum. The timing of glacier advances suggests causal links with North Atlantic Bond cycles and Heinrich events.  相似文献   

7.
Pollen and peat botanical investigations of the Lutnermayok peat bog, Kola Peninsula, northwestern Russia, were carried out, and 21 surface pollen samples were studied. Combined with previous studies our data form the basis for the vegetation history over the last 7000 yr of the Khibiny Mountains. Pinus sylvestris was the dominant species between 7000 and 5000 yr BP and Picea obovata penetrated to the Khibiny Mountains ca. 5500/5300 yr BP. Since 4500 yr BP, Picea replaced Pinus in major parts of the area and dominated the forest cover. Picea immigrated to the Kola Peninsula after 7000 yr BP. There were two paths of spruce migration: from the southeast and the southwest. Grey alder, Alnusincana, immigrated to the Kola Peninsula from the southwest and northwest about ca. 8000 yr BP. Grey alder has been restricted to its modern range since 4000 yr BP. The range of vertical movement of the treeline in Khibiny Mountains during the last 700 yr was 240–260 m, which corresponds to an amplitude of summer temperature change of 2°C. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The bedrock valley of the Pecatonica River north of Freeport, Illinois, contains a thick valley-fill complex of alluvium and drift. Within the valley, loess-capped benches surround hills of silty Illinoian drift. Beneath these benches lie thick deposits of poorly sorted stony silt interbedded with thin lenses of silt, sand, and organic-rich loam. Channel deposits and peat cap the diamicton in places. We interpret the stony silts as solifluction debris shed from silty slopes within the valley-fill during the Early or Middle Wisconsinan (Altonian). Top and bottom radiocarbon dates from a 2.5-m section of peat overlying the diamicton are 26,820 ± 200 and 40,500 ± 1700 yr B.P., respectively. We informally refer to the stony silts, channel sediments, and peat as the “Martintown unit.” Geomorphic position, sediment input, and macrofossils suggest that the dated peat was deposited in a floodplain pond (oxbow?). The pollen record from the peat indicates that a boreal forest dominated this area during the Middle Wisconsinan (late Altonian and Farmdalian). Two pollen zones are recognized: a basal Zone I with Pinus slightly more abundant than Picea and with few herbs and shrubs, and an upper Zone II dominated by Picea and with a larger representation of herbaceous and shrub taxa. Little displacement of vegetation zones is indicated, even though ice advanced to within 100 km of the site during the time of peat accumulation. Because of the problems involved in clearly defining Middle Wisconsinan forest-tundra in mid-latitudes by using analogs of Holocene forest-tundra in high latitudes, caution is required in making geomorphic inferences solely from vegetation data. Together, though, pollen and sediment data indicate that during the Middle Wisconsinan, Pecatonica hillslopes progressed through a sequence of instability-stability-instability related to climatic fluctuations.  相似文献   

9.
The start of deglaciation is recorded in the Minas Basin region of Nova Scotia by the deltaic, glaciofluvial and glaciomarine sediments of the Five Islands Formation. Shell dates on bottomset beds of a delta at Spencers Island range from 14,300 to 12,600, 14C yearsB.P. The time of complete deglaciation of Nova Scotia is still unknown; the uncertainty is at least partially due to evidence for a climatic oscillation at the end of the Late Wisconsinan. Peat beds were deposited during the interval between 12,700 and 10,500 B.P. They overlie previous glacial and fluvial deposits and are overlain by deposits of various origins. Pollen in these peat beds records the migration of spruce into the region indicating climatic warming, and a subsequent deterioration of climate is recorded by the return of tundra-like flora. The peat beds are truncated by a variety of deposits, including fluvial gravel and sand, lacustrine sand, silt and clay, and diamictons. Periglacial landforms and structures have been observed in some of these deposits. At Collins Pond, on the shore of Chedabucto Bay, a diamicton overlying a peat bed is characterized by strong fabrics parallel to the trend of other ice-flow landforms in the region. The evidence suggests that at least some of these deposits are glacigenic, indicating that glaciers were active in Nova Scotia until about 10,000 B.P.  相似文献   

10.
Small ice fields on the western cordillera northeast of Lima were expanded to three times their present size in the recent past, and the regional snow line was probably about 100 m lower than it is today. Outwash from the expanded glaciers formed deltas of silt in valley-bottom lakes. When the ice lobes retreated, the reduced outwash was trapped behind recessional moraines, and the clear meltwater infiltrated into the limestone bedrock and emerged at the heads of the deltas in spring pools. The delta surfaces then became covered with peat, and radiocarbon dates for the base of the peat (1100 ± 70 and 430 ± 70 yr B.P. for two different deltas) indicate that the maximum ice advance was older than those dates and, thus, older than the Little Ice Age of many north-temperate regions. Much older moraines date from expansion of the same local summit glaciers to even lower levels in the main valleys, which had previously been inundated by the cordilleran ice field. The cordilleran deglaciation and this expansion of local glaciers probably occurred between 12,000 and 10,000 yr ago, on the basis of slightly contradictory radiocarbon dates.  相似文献   

11.
Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.  相似文献   

12.
A new record from Potato Lake, central Arizona, details vegetation and climate changes since the mid-Wisconsin for the southern Colorado Plateau. Recovery of a longer record, discrimination of pine pollen to species groups, and identification of macrofossil remains extend Whiteside's (1965) original study. During the mid-Wisconsin (ca. 35,000-21,000 yr B.P.) a mixed forest of Engelmann spruce (Picea engelmannii) and other conifers grew at the site, suggesting a minimum elevational vegetation depression of ca. 460 m. Summer temperatures were as much as 5°C cooler than today. During the late Wisconsin (ca. 21,000-10,400 yr B.P.), even-cooler temperatures (7°C colder than today; ca. 800 m depression) allowed Engelmann spruce alone to predominate. Warming by ca. 10,400 yr B.P. led to the establishment of the modern ponderosa pine (Pinus ponderosa) forest. Thus, the mid-Wisconsin was not warm enough to support ponderosa pine forests in regions where the species predominates today. Climatic estimates presented here are consistent with other lines of evidence suggesting a cool and/or wet mid-Wisconsin, and a cold and/or wet late-Wisconsin climate for much of the Southwest. Potato Lake was almost completely dry during the mid-Holocene, but lake levels increased to near modern conditions by ca. 3000 yr B.P.  相似文献   

13.
Analysis of pollen, spores, macrofossils, and lithology of an AMS 14C-dated core from a subarctic fen on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions on the Kenai Peninsula from 10,700 to 8500 cal yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 cal yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after ~ 1500 cal yr BP in response to the shift to cooler conditions.  相似文献   

14.
Extremely ice-rich syngenetic permafrost, or yedoma, developed extensively under the cold climate of the Pleistocene in unglaciated regions of Eurasia and North America. In Alaska, yedoma occurs in the Arctic Foothills, the northern part of the Seward Peninsula, and in interior Alaska. A remarkable 33-m-high exposure along the lower Itkillik River in northern Alaska opened an opportunity to study the unmodified yedoma, including stratigraphy, particle-size distribution, soil carbon contents, morphology and quantity of segregated, wedge, and thermokarst-cave ice. The exposed permafrost sequence comprised seven cryostratigraphic units, which formed over a period from > 48,000 to 5,000 14C yr BP, including: 1) active layer; 2) intermediate layer of the upper permafrost; 3–4) two yedoma silt units with different thicknesses of syngenetic ice wedges; 5) buried peat layer; 6) buried intermediate layer beneath the peat; and 7) silt layer with short ice wedges. This exposure is comparable to the well known Mus-Khaya and Duvanny Yar yedoma exposures in Russia. Based on our field observations, literature sources, and interpretation of satellite images and aerial photography, we have developed a preliminary map of yedoma distribution in Alaska.  相似文献   

15.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

16.
Sand intraclasts found within diamicton units along the north shore of Lake Erie in the Mohawk Bay area of the Niagara Peninsula would appear to be part of a ‘block-in-matrix’ mélange. The intraclasts are undeformed and many exhibit primary bedding structures. Numerous intraclasts have been rotated and/or tilted and are, in general, subrounded in outline. Examination of the surrounding diamicton reveals that the diamicton clast fabrics exhibit a wide scatter and are not characteristic of any known till clast fabric. Around each intraclast exists an aureole of brecciated diamicton. Other evidence in the form of macro- and microshear structures, and banding within the diamicton indicate that the diamicton has been subject to high strain. Interpretation of the sand intraclasts seems to be intrinsically linked to the origin of the diamicton and together linked to the origin of the mélange. Various hypotheses are suggested separately for the sand intraclasts, diamicton and mélange. A subglacial deformable bed hypothesis is advanced as the most acceptable explanation for the complete sediment sequence in which diamicton and frozen sand intraclasts, the latter mobilised from the substrate, are moved as a mélange below an active fast-moving ice mass. Several implications from this study emerge with regard to glacial sedimentology and stratigraphic interpretations.  相似文献   

17.
A stratigraphic succession of alternating peat and minerogenic sediments at the foot of a steep mountain slope provides the basis for the reconstruction of a preliminary colluvial history from the alpine zone of Jotunheimen, southern Norway. Layers of silty sand and sandy silt, typically 5–10 cm thick and interpreted as distal debris-flow facies, are separated by layers of peat that have been radiocarbon dated. Deposition from at least 7500 to about 3800 14C yr BP of predominantly minerogenic material suggests relatively infrequent but large-magnitude debris-flow events in an environment warmer and/or drier than today. Particularly low colluvial activity between about 6500 and 3900 14C yr BP was terminated by a succession of major debris-flow events between about 3800 and 3400 14C yr BP. Unhumified peats indicative of higher water tables, separate six debris-flows that occurred between about 3300 and 2300 14C yr BP and signify a continuing high frequency of colluvial activity. Uninterrupted peat accumulation between about 2400 and 1600 14C yr BP indicates reduced debris-flow activity; subsequent renewed activity appears to have culuminated in the ‘Little Ice Age’ after about 600 14C yr BP. This pattern of colluvial deposition demonstrates a long history of natural Holocene low-alpine landscape instability, suggests an increase first in the magnitude and then in the frequency of debris-flow activity coincident with late Holocene climatic deterioration, and points to the potential of debris-flow records as a unique source of palaeoclimatic information related to extreme rainfall events. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Two widespread tephra deposits constrain the age of the Delta Glaciation in central Alaska. The Old Crow tephra (ca. 140,000 ± 10,000 yr), identified by electron microprobe and ion microprobe analyses of individual glass shards, overlies an outwash terrace coeval with the Delta glaciation. The Sheep Creek tephra (ca. 190,000 yr) is reworked in alluvium of Delta age. The upper and lower limiting tephra dates indicate that the Delta glaciation occurred during marine oxygen isotope stage 6. We hypothesize that glaciers in the Delta River Valley reached their maximum Pleistocene extent during this cold interval because of significant mid-Pleistocene tectonic uplift of the east-central Alaska Range.  相似文献   

19.
A peat bed found under solifluction deposits on Godøya island, western Norway, accumulated during a few decades around 11 000 yr BP, at the end of the Allerød period of the Late Weichselian. Palaeoecological investigations showed a local vegetation succession on wet sand culminating in a mire community dominated by Carex nigra. Periodic flooding brought in sand and silt, which decreased as drainage was impeded sufficiently for standing water to develop. The surrounding terrestrial vegetation was dominated by Salix scrub, with some open heath and alpine habitats nearby. Apart from two aquatic species, the 29 insect taxa recorded are characteristic of alpine heaths, plant litter (under Salix scrub) and stream-sides. Their remains, together with the terrestrial plant macrofossils, were washed into the mire from nearby. Because the fossils are locally derived, the environmental reconstructions are of the actual conditions at Godøy at ca. 11 000 yr BP. Palaeotemperature estimates from beetles and plants are in agreement. The coleopteran estimates (Mutual Climatic Range Method) suggest mean July temperatures of 10–13°C, slightly cooler than today (13.5°), and January temperatures between +1 and ?10°C, similar to or much colder than today. Summer temperature estimates from individual plant taxa indicate that temperatures during the Allerød period were similar to today's, but estimates from the reconstructed vegetation and timber-line positions give estimates up to 3.5° cooler. Temperatures fell 2.5–7.5°C at the Younger Dryas. This abrupt and severe cooling initiated the solifluction processes on Godøya that buried the peat. The Godøy peat bed and its contained fossils provide a rare glimpse of Allerød biota and environments at the local (site) scale.  相似文献   

20.
During the middle Pleistocene Nome River glaciation of northwestern Alaska, glaciers covered an area an order of magnitude more extensive than during any subsequent glacial intervals. The age of the Nome River glaciation is constrained by laser-fusion 40Ar/39Ar analyses of basaltic lava that overlies Nome River drift at Minnie Creek, central Seward Peninsula, that average 470,000 ± 190,000 yr (±1σ). Milligram-size subsamples of the lava were dated to identify and eliminate extraneous 40Ar enrichments that rendered the mean of conventional K---Ar dates on larger bulk samples of the same flow too old (700,000 ± 570,000 yr). While the 40Ar/39Ar analyses provide a minimum limiting age for the Nome River glaciation, maximum ages are provided by a provisional K---Ar date on a basaltic lava flow that underlies the Nome River drift at nearby Lave Creek, by paleomagnetic determinations of the drift itself at and near the type locality, and by amino acid epimerization analysis of molluscan fossils from nearshore sediments of the Anvilian marine transgression that underlie Nome River drift on the coastal plain at Nome. Taken together, the new age data indicate that the glaciation took place between 580,000 and 280,000 yr ago. The altitude of the Anvilian deposits suggests that eustatic sea level during the Anvilian transgression rose at least as high as and probably higher than during the last interglacial transgression; by correlation with the marine oxygen-isotope record, the transgression probably dates to stage 11 at 410,000 yr, and the Nome River glaciation is younger still. Analyses of floor altitudes of presumed Nome River cirques indicate that the Nome River regional snowline depression was at least twice that of the maximum late Wisconsin. The cause of the enhanced snowline lowering appears to be related to greater availability of moisture in northwestern Alaska during the middle Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号