首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron acoustic blow up solitary waves and periodic waves are studied in a classical unmagnetized plasma containing cold electron fluid, kappa distributed hot electrons and stationary ions. We obtain Korteweg-de Vries (KdV) equation for electron acoustic waves (EAWs) using the reductive perturbation technique (RPT). Applying bifurcation theory of planar dynamical systems to the obtained KdV equation, we prove the existence of electron acoustic blowup solitary and periodic wave solutions. Depending on different physical parameters, two types of exact explicit solutions of the mentioned waves are derived. Our model may be applied to explain blow up solitary and periodic wave features that may occur in the planetary magnetosphere and the plasma sheet boundary layer.  相似文献   

2.
We derive a mixed modified Korteweg-de Vries (MK-dV) equation from a semi-relativistic ion acoustic wave with hot ions by the fluid approximation. The positive cubic nonlinearity of the mixed MK-dV equation give rise to the periodic progressive waves and the algebraic solitary waves. The periodic wave bears a series of solitary pulses, and the algebraic solitary wave reduces the rarefactive solitary wave in the limit of the particular boundary condition. These nonlinear wave modes explain, respectively, the periodic pulse of the potential and the rarefactive solitary wave of the fine structure observed in space.  相似文献   

3.
Shearing instability of ion flow in an inhomogeneous plasma background in the magnetopause boundary layer at the high-latitude magnetotail is studied in this paper. By considering tail-aligned currents, we find that the instability excitation strongly depends on the disturbed wavelength. A quasi-critical wave number for instability is obtained. For relatively long perturbations, the instability tends to be excited at the inner edge of the boundary layer. The stable surface waves at the magnetopause and the K-H instability at the inner edge of the boundary layer can exist at the same time. This may contribute to the continuous transfer of momentum toward the magnetosphere.  相似文献   

4.
The structure of the slow mode coupled with Alfvén mode in the axially symmetric magnetosphere is studied in the paper. Due to the coupling, the slow magnetosonic wave gets dispersion across magnetic shells and becomes not strictly guided. The slow mode is found to be captured between the resonant and cutoff surfaces, where the wave vector radial component goes to infinity and to zero, accordingly. The resonant surface is farther from the Earth than the cutoff surface. The slow mode resonance frequency is much lower than the Alfvén resonance frequency due to small value of the sound velocity near the equator. The maximum of the slow mode amplitude expressed in terms of the parallel magnetic field is concentrated near the equator, but expressed in hydromagnetic terms is concentrated near the ionospheres.  相似文献   

5.
Conditions for the development of Kelvin-Helmholtz (K-H) waves on the magnetopause have been known for more than 15 years; more recently, spacecraft observations have stimulated further examination of the properties of K-H waves. For amagnetopause with no boundary layer, two different modes of surface waves have been identified and their properties have been investigated for various assumed orientations of magnetic field and flow velocity vectors. The power radiated into the magnetosphere from the velocity shear at the boundary has been estimated. Other calculations have focused on the consequences of finite thickness boundary layers, both uniform and non-uniform. The boundary layer is found to modify the wave modes present at the magnetopause and to yield a criterion for the wavelength of the fastest growing surface waves. The paper concludes by questioning the extent to which the inferences from boundary layer models are model dependent and identifies areas where further work is needed or anticipated.  相似文献   

6.
本文对充满垂直均匀磁场的等温大气内的磁声重力波做了严格的解析分析,并将其通解表述成广义超几何函数的形式。该解可用于对磁大气内振荡现象的进一步数值模拟研究。对解的分析澄清了若干磁声重力波的传播性质。  相似文献   

7.
Jonas Lundberg 《Solar physics》1994,154(2):215-230
The weakly nonlinear wave propagation of a slow sausage surface wave traveling along a magnetized slab with a thin nonuniform boundary layer is considered. The ideal incompressible MHD equations are used and the nonlinearities are assumed to be due to second harmonic generation. A nonlinear dispersion relation and the related nonlinear Schrödinger equation is derived. The existence of a continuous thin interface leads to sharply peaked field amplitudes due to resonant interaction with local Alfvén waves. It is shown that the nonlinear effects from processes within the thin layer are much more important than those from the main slab. Furthermore, the nonlinear interaction with local Alfvén waves yields a nonlinear damping rate of the wave that is much larger than the linear damping rate when the transition layer is sufficiently thin.  相似文献   

8.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

9.
Observations by recent space missions reported the detection of Rossby waves (r-modes) in light curves of many stars (mostly A, B, and F spectral types) with outer radiative envelope. This article aims to study the theoretical dynamics of Rossby-type waves in such stars. Hydrodynamic equations in a rotating frame were split into horizontal and vertical parts connected by a separation constant (or an equivalent depth). Vertical equations were solved analytically for a linear temperature profile and the equivalent depth was derived through free surface boundary condition. It is found that the vertical modes are concentrated in the near-surface layer with a thickness of several tens of surface density scale height. Then with the equivalent width, horizontal structure equations were solved, and the corresponding dispersion relation for Rossby, Rossby-gravity, and inertia-gravity waves was obtained. The solutions were found to be confined around the equator, leading to the equatorially trapped waves. It was shown that the wave frequency depends on the vertical temperature gradient as well as on stellar rotation. Therefore, observations of wave frequency in light curves of stars with known parameters (radius, surface gravity, rotation period) could be used to estimate the temperature gradient in stellar outer layers. Consequently, the Rossby mode may be considered as an additional tool in asteroseismology apart from acoustic and gravity modes.  相似文献   

10.
We perform axisymmetric hydrodynamical simulations that describe the nonlinear outcome of the viscous overstability in dense planetary rings. These simulations are particularly relevant for Cassini observations of fine-scale structure in Saturn’s A and B-ring, which take the form of periodic microstructure on the 0.1 km scale, and irregular larger-scale variations on 1-10 km. Nonlinear wavetrains dominate all the simulations, and we associate them with the observed periodic microstructure. The waves can undergo small chaotic fluctuations in their phase and amplitude, and may be punctuated by more formidable ‘wave defects’ distributed on longer scales. It is unclear, however, whether the defects are connected to the irregular larger-scale variations observed by Cassini. The long-term behaviour of the simulations is dominated by the imposed boundary conditions, and more generally by the limitations of the local model we use: the shearing box. When periodic boundary conditions are imposed, the system eventually settles on a uniform travelling wave of a predictable wavelength, while reflecting boundaries, and boundaries with buffer zones, maintain a disordered saturated state. The simulations omit self-gravity, though we examine its influence in future work.  相似文献   

11.
The results of an experimental study of the variations in the intensity of the fluxes of the Earth radiation belt (ERB) particles in 0.3–6 and 1–50 MeV energy intervals for electrons and protons, respectively, are reported. ERBs were studied during strong magnetic storms from August 2001 through November 2003. The results of the CORONAS-F mission obtained during the magnetic storms of November 6 (D st = ?257 nT) and November 24, 2001 (D st = ?221 nT), October 29–30 (D st = ?400 nT) and November 20, 2003 (D st = ?465 nT) are analyzed. The electron flux is found to decrease abruptly in the outer radiation belt during the main phase of the magnetic storms under consideration. During the recovery phase, the outer radiation belt is found to recover much closer to Earth, near the boundary of the penetration of solar electrons during the main phase of the magnetic storm. We associate the decrease in the electron flux with the abrupt decrease of the size of the magnetosphere during the main phase of the storm. Note that, in all cases studied, the Earth radiation belts exhibited rather long (several days) variations. In those cases where solar cosmic-ray fluxes were observed during the storm, protons with energies 1–5 MeV could be trapped to form an additional maximum of protons with such energies at L >2.  相似文献   

12.
The Kelvin-Helmholtz instability is believed to be an important means for the transfer of energy, plasma, and momentum from the solar wind into planetary magnetospheres, with in situ measurements reported from Earth, Saturn, and Venus. During the first MESSENGER flyby of Mercury, three periodic rotations were observed in the magnetic field data possibly related to a Kelvin-Helmholtz wave on the dusk side magnetopause. We present an analysis of the event, along with comparisons to previous Kelvin-Helmholtz observations and an investigation of what influence finite ion gyro radius effects, believed to be of importance in the Hermean magnetosphere, may have on the instability. The wave signature does not correspond to that of typical Kelvin-Helmholtz events, and the magnetopause direction does not show any signs of major deviation from the unperturbed case. There is thus no indication of any high amplitude surface waves. On the other hand, the wave period corresponds to that expected for a Kelvin-Helmholtz wave, and as the dusk side is shown to be more stable than the dawn side, we judge the observed waves not to be fully developed Kelvin-Helmholtz waves, but they may be an initial perturbation that could cause Kelvin-Helmholtz waves further down the tail.  相似文献   

13.
An analysis of magneto-acoustic-gravity waves in the case of an isothermal atmosphere permeated by a uniform magnetic field is presented. The general solution is expressed in terms of generalized hypergeometric functions. It can be used in numerical simulation of oscillations in a magnetic atmosphere.

It is shown that the elliptically polarized magneto-acoustic-gravity waves consist of a pair of surface waves and a pair of body waves above the cut-off frequency. The body waves along the magnetic field are similar to acoustic waves in an atmosphere and their cut-off frequency is unaffected by magnetic field. The transverse oscillation decreases with height. For the usual boundary condition, the longitudinal oscillation decreases with height; however, in some cases, it may contain terms that increase with height. The solution is singular on a family of ellipses in the frequency - horizontal wave number plane. Near these ellipses, the wave components grow indefinitely.  相似文献   


14.
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa distributed) cool and hot electrons have been investigated using non-perturbative approach. We have transformed basic model equations to an ordinary differential equation involving electrostatic potential. Then we have applied the bifurcation theory of planar dynamical systems to the obtained equation and we have proved the existence of solitary wave solutions and periodic wave solutions. We have derived two exact solutions of solitary and periodic waves depending on the parameters. From the solitary wave solution and periodic wave solution, we have shown the effects of density ratio p of cool electrons and ions, spectral index κ, and temperature ratio σ of cool electrons and hot electrons on characteristics of ion acoustic solitary and periodic waves.  相似文献   

15.
Murawski  K.  Aschwanden  M. J.  Smith  J. M. 《Solar physics》1998,179(2):313-326
Impulsively generated magnetohydrodynamic waves in solar coronal loops, with arbitrary plasma , are studied numerically by a flux-corrected transport algorithm. Numerical results show that the total reflection which occurs in the region of low Alfvén speed leads to trapped fast kink magnetosonic waves. These waves propagate along the slab and exhibit periodic, quasi-periodic, and decay phases. As a consequence of the difference in wave propagation speeds, the time signatures of the slow magnetosonic waves are delayed in time in comparison to the time signatures of the fast magnetosonic and Alfvén waves. An interaction between the waves can generate a longer lasting and complex quasi-periodic phase of the fast wave. We discuss also the observational detectability of such MHD waves in optical, radio, and soft X-ray wavelenghts.  相似文献   

16.
Erdélyi  Róbert  Ballai  István 《Solar physics》1999,186(1-2):67-97
Nonlinear theory of driven magnetohydrodynamic (MHD) waves in the slow dissipative layer in isotropic steady plasmas developed by Ballai and Erdélyi (Solar Phys. 180 (1998)) is used to study the nonlinear interaction of sound waves with one-dimensional isotropic steady plasmas. An inhomogeneous magnetic slab with field-aligned plasma flow is sandwiched by a homogeneous static magnetic-free plasma and by a homogeneous steady magnetic plasma. Sound waves launched from the magnetic-free plasma propagate into the inhomogeneous region interacting with the localised slow dissipative layer and are partially reflected, dissipated or transmitted by this region. The nonlinearity parameter, introduced by Ballai and Erdélyi, is assumed to be small and a regular perturbation method is used to obtain analytical wave solutions. Analytical studies of resonant absorption of sound waves show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We also find that a steady equilibrium shear flow can significantly influence the nonlinear resonant absorption in the limits of thin inhomogeneous layer and weak nonlinearity. The presence of an equilibrium flow may therefore be important for the nonlinear resonant MHD wave phenomena. A parametric analysis also shows that the nonlinear part of resonant absorption can be strongly enhanced by the equilibrium flow.  相似文献   

17.
Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward and downward traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an α-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.  相似文献   

18.
Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with q-nonextensive velocity distributed ions are studied through non-perturbative approach. Basic equations are reduced to an ordinary differential equation involving electrostatic potential. After that by applying the bifurcation theory of planar dynamical systems to this equation, we have proved the existence of solitary wave solutions and periodic wave solutions. Two exact solutions of the above waves are derived depending on the parameters. From the solitary wave solution and periodic wave solution, the effect of the parameter (q) is studied on characteristics of dust acoustic solitary waves and periodic waves. The parameter (q) significantly influence the characteristics of dust acoustic solitary and periodic structures.  相似文献   

19.
We investigate the formation and evolution of isothermal collapse nonuniformity for rotating magnetic interstellar clouds. The initial and boundary conditions correspond to the statement of the problem of homogeneous cloud contraction from a pressure equilibrium with the external medium. The initial uniform magnetic field is collinear with the angular velocity. Fast and slow magnetosonic rarefaction waves are shown to be formed and propagate from the boundary of the cloud toward its center in the early collapse stages. The front of the fast rarefaction wave divides the gas mass into two parts. The density, angular velocity, and magnetic field remain uniform in the inner region and have nonuniform profiles in the outer region. The rarefaction wave front surface can take both prolate and oblate shapes along the rotation axis, depending on the relationship between the initial angular velocity and magnetic field. We derive a criterion that separates the two regimes of rarefaction wave dynamics with the dominant role of electromagnetic and centrifugal forces. Based on analytical estimations and numerical calculations, we discuss possible scenarios for the evolution of collapse nonuniformity for rotating magnetic interstellar clouds.  相似文献   

20.
The evolution of two dimensional wave packets on the surface of a self-gravitating fluid layer is investigated and shown to be governed by a nonlinear Schrödinger equation. The wave train of finite amplitude is modulationally unstable. Obtained also are the dynamical equations for the second harmonic resonance. The analysis reveals that the general motion consists of both amplitude and phase modulated waves of which the pure phase and amplitude modulated waves, solitary waves, and phase jump are just the special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号