首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Monday, May 12, 2008, a devastating mega-earthquake of magnitude 8.0 struck the Wenchuan area, northwestern Sichuan Province, China. The focal mechanism of the earthquake was successive massive rock fracturing 15 km in depth at Yingxiu. Seismic analysis confirms that the major shock occurred on the Beichuan–Yingxiu Fault and that aftershocks rapidly extended in a straight northeast–southeast direction along the Longmenshan Fault zone. Fatalities approaching a total of 15,000 occurred, with a significant number resulting from four types of seismically triggered geohazards—rock avalanches and landslides, landslide-dammed lakes (“earthquake lakes”), and debris flows. China Geological Survey has identified 4,970 potentially risky sites, 1,701 landslides, 1,844 rock avalanches, 515 debris flows, and 1,093 unstable slopes. Rock avalanches and landslides caused many fatalities directly and disrupted the transportation system, extensively disrupting rescue efforts and thereby causing additional fatalities. Landslide-dammed lakes not only flooded human habitats in upstream areas but also posed threats to potentially inundated downstream areas with large populations. Debris flows become the most remarkable geohazards featured by increasing number, high frequency, and low triggering rainfall. Earthquake-triggered geohazards sequentially induced and transformed to additional hazards. For example, debris flows occurred on rock avalanches and landslides, followed by landslide-dammed lakes, and then by additional debris flows and breakouts of the landslide-dammed lakes and downstream flooding. Earthquake-induced geohazards occurred mainly along the fault zone and decreased sharply with distance from the fault. It can be anticipated that post-earthquake geohazards, particularly for debris flows, will continue for 5–10 years and even for as long as 20 years. An integrated strategy of continuing emergency response and economic reconstruction is required. The lesson from Wenchuan Earthquake is that the resulted geohazards may appear in large number in active fault regions. A plan for geohazard prevention in the earthquake-active mountainous areas is needed in advance.  相似文献   

2.
汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律   总被引:22,自引:4,他引:18  
512汶川大地震造成大量的次生斜坡灾害,本次研究区域为汶川大地震的11个重灾区,包括汶川、北川、青川、安县、平武、茂县、江油、彭州、什邡、绵竹、理县等市县。通过对重灾区航片、卫片、雷达图像的解译研究发现,重灾区次生斜坡灾害的主要灾种表现为崩塌、滑坡以及崩塌、滑坡高速运动解体形成的碎屑流(个别地方由于水的参与表现为泥石流)以及它们堵江形成的堰塞湖。研究发现地震次生斜坡灾害的发育具有明显的丛集性规律。从区域上看,次生斜坡灾害明显呈带状,沿龙门山断裂带展布,并主要受北川映秀断裂控制。各灾种的发育在不同地段发育的规模、频率差别较大。以灾害分布面积来排序,汶川县灾害面积最大,为131.55km2,其次为北川县,为45.57km2,其余9个县(市)灾害面积相差不大,均介于6~17km2,其中理县灾害面积最小,为6.25km2。各灾种的发育在不同地段发育的规模、频率差别较大。青川县、平武县灾种主要为滑坡,汶川县、茂县、安县、理县灾种主要表现崩塌转化的碎屑流,北川的主要灾种则为碎屑流,其次为滑坡,什邡、彭州、绵竹、江油等地主要灾种为崩塌。 灾种发育的这种地域性差别主要受控于地层岩性,除此而外,还与构造特征、地形地貌等因素紧密相关。研究表明:岩性对灾害种类的展布有决定性控制作用。统计发现,岩性越坚硬,崩塌、碎屑流发育率越高,滑坡则在软岩地区、较软岩地区和较坚硬区发育率最高,泥石流则在软岩地区最为发育。地形地貌对次生斜坡灾害的发育有重要影响,统计表明,崩塌、碎屑流以及泥石流在1200~2000m坡段范围内发育率最高,其次为800~1200m坡段;而滑坡则在800~1200m坡段范围发育率最高。对坡度而言,除11~20坡度范围外,崩塌和碎屑流的发育率总体具有随坡度增高而增大的特点;而滑坡和泥石流的发育率呈现典型的单峰特征,在1~20范围内发育率最大。坡向对地震次生斜坡灾害的发育影响不明显。 地震次生斜坡灾害的发育规律表明,地震斜坡灾害的发生主要受控于活动构造本身,并沿活动构造呈带状展布,同时受场地条件如岩性、地形地貌等因素的强烈控制。  相似文献   

3.
石玲  王涛  辛鹏 《地质力学学报》2013,19(4):351-363
根据近7年来陕西省宝鸡市12区县地质灾害详细调查资料,总结宝鸡地区地质灾害主要类型、空间分布规律、发育特征及其危害性。研究结果显示,宝鸡市地质灾害发育类型主要包括滑坡、崩塌、泥石流及不稳定斜坡等4类,总体发育特征具有群发性、突发性、周期性和链生性。其中,滑坡和崩塌数量多、危害大,泥石流相对发育较少,不稳定斜坡多与崩塌相伴生,大多发展为崩塌灾害。每年汛期在强降雨作用下,都可能诱发表层小型滑坡和崩塌,特别是城镇居民房前屋后的小型黄土滑坡和崩塌,以及山区公路切坡导致的残坡积层滑坡崩塌频繁发生,是宝鸡市地质灾害群测群防和减灾防灾关注的重点。  相似文献   

4.
Recognition, classification and mechanical description of debris flows   总被引:21,自引:0,他引:21  
P. Coussot  M. Meunier 《Earth》1996,40(3-4):209-227
Various types of flow or mass movement involving water and sediments occur on steep slopes in mountainous areas. Among them, debris flows are peculiar events during which a large volume of a highly concentrated viscous water-debris mixture flows through a stream channel. Throughout the world these phenomena cause considerable damage but remain poorly understood although a basic knowledge is already available concerning their recognition and propagation.

Firstly, a synthesis of the useful practical criteria of recognition is proposed. Debris flows must be seen as intermediate phenomena between hyperconcentrated flows (intense bed load transport) and landslides separated from them by sharp transitions of some characteristics (celerity, deposit nature and flow type). Two parameters, solid fraction and material type, thought to be appropriate for a sound and practical classification, are brought out, and the corresponding complete classification of flow and mass movements in mountain areas is presented. Two extreme debris flow types are thus distinguished: muddy debris flows and granular debris flows. A critical review of recent advances in debris flow dynamic is then proposed. It is pointed out that adequate work must be carried out in the field of non-Newtonian fluid mechanics. In particular, one fundamental rheological property of debris flow materials is the yield stress, which explains thick deposits on steep slopes and can be inferred from field measurements. Furthermore it can be used to estimate viscous dissipation within the bulk during flow. Relevant models predicting muddy debris flow dynamics are already available whereas further progress is needed concerning granular flows.  相似文献   


5.
Soil properties of major landslides that occurred recently on the mid-altitude slopes of Mount Elgon, eastern Uganda were analysed. A mudflow, located at the Kitati protected forest site, and two deep debris flows on the Nametsi and Buwabwala deforested steep slopes (36°–58°) were surveyed. In order to test the hypothesis that ‘soils at the landslide sites are particularly ‘problem soils’ and thus prone to landslides’, the following analyses were undertaken: particle size distribution, Atterberg limits, shear strength and factor of safety (Fs). Soils at the Kitati and Buwabwala sites exhibited expansive potential, owing to clay contents well above 20%. A clay content exceeding 32% was identified at the Nametsi debris flow site implying an extremely high expansive potential of the soil. High liquid limits (LLs) at Kitati (59%) and Buwabwala (53%) meant that the soils qualified as vertisols susceptible to landslides. High plasticity indices (PIs) (averaging 33%) also confirmed the vertic nature of soils at the Nametsi debris flow site. Whereas the value of F s  < 1 for the Kitati site signifies an inherently unstable slope, Nametsi and Buwabwala are supposedly stable slopes (F s  > 1). Despite this finding, the stable sites could be described as only conditionally stable because of the interplay of various physical, pedological and anthropogenic factors. The results point to the fact that soils at the landslide sites are inherently ‘problem soils’ where slope failure can occur even without human intervention. Therefore, the hypothesis that soils at three landslide sites are inherently ‘problem soils’ and prone to landslides, is accepted.  相似文献   

6.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

7.
The Iwate–Miyagi Nairiku Earthquake in 2008, whose seismic intensity was M. 7.2 in Japan Meteorological Agency (JMA) scale, induced innumerable landslides on the southern flank of Mt. Kurikoma volcano allocated along the Ou Backbone Range in Northeast Japan. Most landslides are detected in a hanging wall side of the seismic fault. Those landslides are classified into five types: deep-seated slide, debris slide, shallow debris slide, secondary shallow debris slide, and debris flow. Most common landslide types induced by the earthquake are shallow debris slides and subsequent debris flows. They are intensively distributed along steep gorges incising a volcanic skirt of Mt. Kurikoma, consisting of welded ignimbrite of the Pleistocene age. Debris flows are also distributed even along gentle river floors in the southern lower flank of the volcano. The area of densely distributed debris slides, shallow debris slides, and debris flows is concordant with that of severe seismic tremor. Thus, genetic processes of landslides induced by the Iwate–Miyagi Nairiku Earthquake in 2008 are attributed to multiple causative factors such as geology, topography, and seismic force.  相似文献   

8.
Regional landslide risk to the Cairns community   总被引:10,自引:0,他引:10  
A GIS-based regional reconnaissance-level assessment of landslide risk to the Cairns community has been carried out to provide information to the Cairns City Council for planning and emergency management purposes. Magnitude recurrence relations were tentatively established for the two main slope processes: landslides on the hill slopes; and large debris flows extending out from the gully systems on to the plains. From the recurrence relations, landslide hazard (H) was estimated as the annual probability of a point being impacted by a landslide. The nature, number (E) and geographic distribution of the elements at risk were obtained by interrogating the GIS, and their vulnerabilities (V) to destruction by the two main landslide slope processes were assessed. From this information, specific risk (= H × V) and total risk (= H × V× E) maps were produced.Although total landslide risk is relatively low at present, it will increase as development extends further into the hill slopes, unless adequate mitigation measures are taken. Large debris flows, while considerably less frequent than landslides on cut slopes, could impact on subdivisions at the base of the slopes. Blockage by landslides of roads and railways providing access to Cairns can cause isolation of the community. Flash flooding in Freshwater Creek, or debris flows, have the potential to disrupt the Cairns water supply by blocking the intake or destroying sections of the pipeline.  相似文献   

9.
The present study was conducted along the Mugling–Narayanghat road section and its surrounding region that is most affected by landslide and related mass-movement phenomena. The main rock types in the study area are limestone, dolomite, slate, phyllite, quartzite and amphibolites of Lesser Himalaya, sandstone, mudstone and conglomerates of Siwaliks and Holocene Deposits. Due to the important role of geology and rock weathering in the instabilities, an attempt has been made to understand the relationship between these phenomena. Consequently, landslides of the road section and its surrounding region have been assessed using remote sensing, Geographical information systems and multiple field visits. A landslide inventory map was prepared and comprising 275 landslides. Nine landslides representing the whole area were selected for detailed studies. Field surveys, integrated with laboratory tests, were used as the main criteria for determining the weathering zones in the landslide area. From the overall study, it is seen that large and complex landslides are related to deep rock weathering followed by the intervention of geological structures as faults, joints and fractures. Rotational types of landslides are observed in highly weathered rocks, where the dip direction of the foliation plane together with the rock weathering plays a principle role. Shallow landslides are developed in the slope covered by residual soil or colluviums. The rock is rather fresh below these covers. Some shallow landslides (rock topples) are related to the attitude of the foliation plane and are generally observed in fresh rocks. Debris slides and debris flows occur in colluviums or residual soil-covered slopes. In few instances, they are also related to the rock fall occurring at higher slopes. The materials from the rock fall are mixed with the colluviums and other materials lying on the slope downhill and flow as debris flow. Rock falls are mainly related to the joint pattern and the slope angle. They are found in less-weathered rocks. From all these, it is concluded that the rock weathering followed by geological structures has prominent role in the rock slope instability along Mugling–Narayanghat road section and its surrounding regions.  相似文献   

10.
Shingled Quaternary debris flow lenses on the north-east Newfoundland Slope   总被引:1,自引:0,他引:1  
Debris flow deposits are the principal component of Quaternary continental slope sediments between the north-east Newfoundland Shelf and central Orphan Basin. In seismic profiles, these deposits occur as shingled, elongate, acoustically transparent lenses with their long axes orientated downslope. Deposits of individual flows form positive mounds on the sea floor; subsequent flows were diverted by the pre-existing topography into bathymetric lows between older debris flow deposits. These deposits show a large variation in the area of sea floor covered by individual flows (about 60–1000 km2), average thickness of deposits (9–37 m) and volume of sediment displaced (1–27 km3). The ratio of average thickness to a measure of deposit diameter, termed the aspect ratio, has a threefold variation from 0·0006 to 0·0021. Very low depositional slopes and low aspect ratios suggest relatively low viscosities, probably due to inmixing of water during downslope transport. Stratified sediments form three distinct horizons and are locally interbedded with the debris flow deposits. These are mainly hemipelagic deposits. The slope and rise to the west of the Orphan Basin are constructional in character. The apparent absence of upper slope erosional features and the abundance of debris flow deposits on the slope suggest that the supply of sediment to the continental slope occurred predominantly during times of maximum extent of Quaternary glacial ice. The ice sheet grounding line during several glacial maxima must have been situated at or near the present shelf break, supplying vast amounts of sediment directly to the upper slope. Oversteepening and subsequent slope failures fed material into deeper water.  相似文献   

11.
The Campanian Apennines are characterized by the presence of monocline ridges, mainly formed by limestone. During the periods of volcanic activity of the Somma-Vesuvius and Phlegrean Fields, the ridges were mantled with pyroclastic materials in varying thickness. The pyroclastics have been involved in destructive landslides both in historical time and in the recent past (1997, 1998, 1999). The landslides occur following intense and prolonged rainfalls. In some cases, landslides extended up to 4 km into the surrounding lowlands and reached towns, causing severe destruction and over 200 deaths. Generally, the landslides begin as small debris slides that develop into large, shallow debris avalanches or debris flows involving pyroclastic horizons and colluvial soils (0.5–2 m thick) on steep and vegetated slopes, often at the heads of gullies. During motion, the landslide materials eroded vegetation and soils from the slope, so that the moving material volume tended to increase. Then, proceeding towards and beyond the base of the slopes, the phenomena evolved into hyperconcentrated streamflow due to dilution by incorporating water. The results of motion analyses are described. An empirical rheological relationship was used including two principal terms that depend on the total normal stress and on the flow velocity. On this basis, the model has simulated the velocity and duration of debris avalanches and the distribution of the deposits. The selected areas were those of Sarno/Quindici and Cervinara, where a large amount of data is available both on the material properties and geomorphological setting. It was found that the majority of the cases at the two sites can be simulated successfully with only one specific pair of rheologic parameters. This provides the possibility for first-order predictions to be made of the motion of future landslides. Such predictions will be a valuable tool for outlining potential hazard areas and designing remedial measures.  相似文献   

12.
Debris strength is a key factor in the initiation of debris flows. Therefore debris strength must be measured to assess the initiation conditions of debris flows. It is difficult to test the strength of coarse debris in the laboratory, as large quantities of material are needed to eliminate single-particle effects. Therefore in-situ strength tests have been conducted on scree slopes in the southern French Alps to measure the strength of dry, coarse, matrixless debris. The test method consisted of bringing a debris mass into movement parallel to the slope surface on slopes at or near the critical slope angle.

As dry, coarse, matrixless debris is essentially cohesionless, its strength can be characterized by its internal friction angle. Mean kinetic internal friction angles vary from 360° to 387° for five debris types with mean stone sizes ranging from 33–50 mm. Stone size sorting is the most important cause of variations in kinetic internal friction angle. Stone shape also influences the kinetic internal friction angle, but it is less important. Stone size, stone shape sorting and rock type have no influence. However, rock type may indirectly influence kinetic internal friction angle through stone size sorting and stone shape.  相似文献   


13.
Campania Region (Italy), one of the most densely populated areas in Europe, is probably the one with the highest risk of landslide. A large part of the region is covered by unsaturated cohesionless pyroclastic deposits subjected to rainfall-induced landslides. According to experience, these can display different features and magnitude. The most catastrophic landslides are liquefied debris flows which periodically occur on steep slopes, causing death and destruction in areas located downslope. Therefore, zoning of those areas which can be the source of liquefied debris flow is necessary. The paper reports some useful elements for zoning based on infinite slope analysis, accounting for the results of recent research on the mechanics of rainfall-induced landslides in pyroclastic soils.  相似文献   

14.
Kerala is the third most densely populated state in India. It is a narrow strip of land, of which 47% is occupied by the most prominent orographic feature of peninsular India, The Western Ghats mountain chain. The highlands of Kerala experience several types of landslides, of which debris flows are the most common. They are called “Urul Pottal” in the local vernacular. The west-facing Western Ghats scarps that runs the entire extent of the mountain system is the most prone physiographic unit for landslides. The highlands of the region experience an annual average rainfall as high as 500 cm through the South-West, North-East and Pre-Monsoon showers. A survey of ancient documents and early news papers indicates a reduced rate of slope instability in the past. The processes leading to landslides were accelerated by anthropogenic disturbances such as deforestation since the early 18th century, terracing and obstruction of ephemeral streams and cultivation of crops lacking capability to add root cohesion in steep slopes. The events have become more destructive given the increasing vulnerability of population and property. Majority of mass movements have occurred in hill slopes >20° along the Western Ghats scarps, the only exception being the coastal cliffs. Studies conducted in the state indicates that prolonged and intense rainfall or more particularly a combination of the two and the resultant pore pressure variations are the most important trigger of landslides. The initiation zone of most of the landslides was typical hollows generally having degraded natural vegetation. A survey of post-landslide investigation and news paper reports enabled the identification of 29 major landslide events in the state. All except one of the 14 districts in the state are prone to landslides. Wayanad and Kozhikode districts are prone to deep seated landslides, while Idukki and Kottayam are prone to shallow landslides.  相似文献   

15.
On November 1, 1970, an earthquake of magnitude 7.0 occurred 32 km north of Madang on the north coast of Papua New Guinea, and on the fringes of the Adelbert Range. Dense landsliding occurred over an area of 240 km2. Debris avalanches removed shallow soil and forest vegetation from slopes of 45°. Earthflows occurred on deeper soils and lower-angled slopes. The nature of the landslides and disposition of the vegetation debris suggest that falling trees triggered the landslides during the earthquake. Logs in the deposits were an important influence on the movement of landslide debris in the channel systems.  相似文献   

16.
人工降雨条件下冲沟型泥石流起动试验研究   总被引:1,自引:0,他引:1  
下垫面以位于贡嘎山东坡的熊家沟为模型,开展了不同降雨强度条件下冲沟型泥石流起动的模拟试验,初步研究了冲沟型泥石流的形成机理和演化特征.试验研究表明:(1)在强降雨条件下,水体入渗速度、不同深度土体含水量变化与降雨强度呈反比例关系,降雨强度越大,越不利于水体入渗,而有利于坡面汇流、冲沟径流和下切侵蚀; (2)在强降雨和径流条件下,土体破坏方式、破坏程度以及泥石流形成机理表现出差异性.相对较小雨强降雨条件下,土体破坏方式以滑坡为主,泥石流形成模式表现为滑坡液化与转化起动,雨强较大降雨条件下,土体破坏方式以侵蚀垮塌为主,泥石流形成模式为洪流席卷垮塌体和沟床揭底; (3)起动试验中泥石流阵性特征明显.在强降雨条件下,雨强与泥石流的规模、黏度之间没有正相关性,雨强越大,泥石流黏度越小,试验中多出现的是高含砂洪流,而相对较小雨强作用下由土体液化转化形成的泥石流黏度较大.试验现象和结果与熊家沟泥石流起动、发生过程具有较高的一致性.  相似文献   

17.
The road widening carried out along National Highway-40, a strategic road corridor of north-eastern India, to ease the traffic snarls for geopolitical developments in the region. The newly exposed in situ soil slopes along National Highway-40 are on the verge of shear instability, and slope failures occur due to heavy earth cuttings. As a consequence, the road corridor witnesses several geotechnical failures during rainy seasons. The blasting activities initiated and propagated the soil creeps and falls resulting road blockades. Even a small rain shower is enough to undercut and uproot trees and transport boulders and surrounding earth materials up to the corridor. Besides, landslides are also prone to damage demographic areas and settling house units, thus invites for preventive measures towards hill slope management as these slopes make the highway corridor unsafe to the commuters. Therefore, the present study is aimed to investigate the stability of the hill cut soil slopes and to suggest possible stabilisation measures. The study also highlighted that steep soil slopes with high moisture content are prone to landslides mainly due to infiltration, and water flows on the slopes during high and prolonged rainfall. The highly plastic soils rich in silt and clay size particles with high moisture content cause soil/debris slide and flow. The numerical modelling of slopes using Fast Lagrangian Analysis of Continua (FLAC) codes (version 4.0) indicates failures in excavated high angle cut slopes. The re-excavation and benching of unstable slopes with geonets or bionets or jute matting to promote vegetation growth were suggested as stabilisation measures by field investigation, laboratory studies and numerical analysis of slopes.  相似文献   

18.
Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is interrupted. These results lead to the identification of a comprehensive hydrogeomorphological model of susceptibility to initial landslides that links morphological, stratigraphical and hydrological conditions. The calculation of intensities and durations of rainfall necessary for slope instability allowed the identification of deterministic hydrological thresholds that account for uncertainty in properties and observed rainfall intensities.  相似文献   

19.
渔子溪下游耿达乡-映秀镇河段是汶川地震触发震害最为严重、灾害链效应最为显著的河段之一。本文通过详细的实地调查和遥感影像分析,力求揭示该河段地质灾害的特征及灾害链的成生过程、成生条件。依据震害特征,将地质灾害划分为斜坡中上部强风化岩土体失稳坠落、块状岩质边坡滑移式垮塌及局地暴雨启动型泥石流3类,并分析震害发育规律。调查表明,灾害点的空间展布受控于发震断裂,且北岸发育密度更大,茂汶断裂两侧差异显著。对51个崩塌点及17条泥石流研究发现,地震崩塌灾害主要发生在40°以上斜坡,主要分布在斜坡中上部(0.4倍坡高以上)及地貌突出部位,且大纵比降的壮年期沟谷易发泥石流。同时,诱发因素的转变致使地质灾害向降雨主导的小规模单体崩塌、泥石流方向发展。区内主要存在2种地质灾害链:(1)内动力地质灾害链"地震→崩塌→压迫河道、毁路或形成堰塞湖",其成生过程经历高速启动、滑移运动、堵河3个阶段; (2)内外动力耦合作用地质灾害链"地震→崩塌、震裂山体→暴雨→泥石流→压迫河道、毁路或形成堰塞湖",成生过程可划分为启动、堵塞(沟谷后)溃决、铺床、堵河4个阶段。灾害链的成生条件概括为:脆弱的地质环境; 强烈地震动震垮、震裂高陡斜坡(>50m,>40°); 强降雨及适宜的堵河条件。  相似文献   

20.
Record levels of precipitation during February 1992 generated 290 earth flows and earth slumps in Wadi Ziqlab, Jordan. Geomorphologic and sedimentological characteristics of these landslides and older colluvial deposits were used to identify the dominant mass-wasting processes active in the wadi. Earth flows in 1992 left long linear scars on the steep hillsides and deposited thin, fine and coarse-grained, sheets on the well-developed colluvial slopes below. Older colluvial deposits exposed along the wadi bottom are crudely stratified, heavily bioturbated, and contain paleosols, suggesting colluviation was episodic and occurred through a slow accumulation of successive earth flows. Earth slumps in 1992 produced crescentic scarps, flat benches, and thick colluvial masses; similar features preserved on the wadi slopes were formed by the same process at an earlier time. Annual slope wash does not appear important on the steep, heavily landslide-scarred, slopes. The uneven distribution and episodic occurrence of earth flows and earth slumps in Wadi Ziqlab have resulted in highly variable burial depths of archaeological material, as illustrated in one locality where Roman artifacts are buried over 1 m deeper than a Neolithic site only 200 m away. The ability of earth flows to transport artifacts great distances has given rise to inverted stratigraphy on colluvial slopes and has produced large artifact scatters located beyond the margins of the colluvial slopes. These complex postoccupation disturbances and prehistoric land-use practices would have been difficult to interpret without a full understanding of the hillslope processes active in Wadi Ziqlab and the landscape features they have produced. © 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号