首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Geology Review》2012,54(13):1596-1615
ABSTRACT

Nd-isotope and lithogeochemistry of an early Palaeoproterozoic high-Si high-Mg boninite–norite (BN) suite of rocks from the southern Bastar craton, central India, are presented to understand their nature, origin, and tectonic setting of emplacement. Various types of evidence, such as field relationships, radiometric metamorphic ages, and the global distribution of BN magmatism, suggest emplacement in an intracratonic rift setting, commonly around 2.4–2.5 Ga. On the basis of geochemistry these high-Si high-Mg rocks are classified as high-Ca boninites, high-Mg norites, and high-Mg diorites. Nd-isotope data indicate that the high-Mg norite and the high-Mg diorite samples are similar, whereas the high-Ca boninites have a different isotopic character. The high-Mg norite and the high-Mg diorite samples have younger TDM model ages than the high-Ca boninites. Geochemical and Nd-isotopic characteristics of the studied rocks indicate some prospect of crustal contamination; however, the possibility of mantle metasomatism during ancient subduction event cannot be ignored. Trace-element modelling suggests that the high-Ca boninites may have crystallized from a magma generated by a comparatively greater percentage of melting of a lherzolite mantle source than the source for the other two varieties. Furthermore, the high-Ca boninite rocks are most likely derived from an Archaean subduction process (the Whundo-type), whereas the other two types are the products of the interaction of subduction-modified refractory mantle wedge and a plume, around the Neoarchaean–Palaeoproterozoic boundary. The emplacement of the high-Mg norites and the high-Mg diorites may be linked to crustal thickening and associated cratonization at the end of the Archaean.  相似文献   

2.
The Hadean–Archaean transition is poorly known because of the dearth of Hadean rocks. A new conceptual model is presented based on variations in mantle potential temperature (Tp) with time. The critical issue is the depth of melting with respect to a negatively buoyant magma sink between 410 and 330 km (14–11 GPa). Hadean plume magmatism begins below the magma sink, leading to generation of a refractory upper mantle reservoir and the minor production of boninite‐like magmas near the surface. With cooling, the onset of melting migrates above the magma sink, a situation likely occurring since 3.9 Ga and corresponding to Tps of ~1870°C or less. Therefore, a burst of mafic to ultramafic volcanism was produced at 3.9–3.8 Ga. This extensive volcanism may have triggered gravitational instabilities and favoured the recycling of the Hadean crust into the mantle. Results of this model are discussed in the light of existing isotopic data.  相似文献   

3.
Early Paleozoic magmatism of the Tannuola terrane located in the northern Central Asian Orogenic Belt is important to understanding the transition from subduction to post-collision settings. In this study, we report in situ zircon U-Pb ages, whole rock geochemistry, and Sr-Nd isotopic data from the mafic and granitic rocks of the eastern Tannuola terrane to better characterize their petrogenesis and to investigate changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal three magmatic episodes for about 60 Ma from ∼510 to ∼450 Ma, that can be divided into the late Cambrian (∼510–490 Ma), the Early Ordovician (∼480–470 Ma) and the Middle-Late Ordovician (∼460–450 Ma) stages. The late Cambrian episode emplaced the mafic, intermediate and granitic rocks with volcanic arc affinity. The late Cambrian mafic rocks of the Tannuola terrane may originate from melting of mantle source that contain asthenosphere and subarc enriched mantle metasomatized by melts derived from sinking oceanic slab. Geochemical and isotopic compositions indicate the late Cambrian intermediate-granitic rocks are most consistent with an origin from a mixed source including fractionation of mantle-derived magmas and crustal-derived components. The Early Ordovician episode reveal bimodal intrusions containing mafic rocks and adakite-like granitic rocks implying the transition from a thinner to a thicker lower crust. The Early Ordovician mafic rocks are formed as a result of high degree melting of mantle source including dominantly depleted mantle and subordinate mantle metasomatized by fluid components while coeval granitic rocks were derived from partial melting of the high Sr/Y mafic rocks. The latest Middle-Late Ordovician magmatic episode emplaced high-K calc-alkaline ferroan granitic rocks that were formed through the partial melting the juvenile Neoproterozoic sources.These three episodes of magmatism identified in the eastern Tannuola terrane are interpreted as reflecting the transition from subduction to post-collision settings during the early Paleozoic. The emplacement of voluminous magmatic rocks was induced by several stages of asthenospheric upwelling in various geodynamic settings. The late Cambrian episode of magmatism was triggered by the slab break-off while subsequent Early Ordovician episode followed the switch to a collisional setting with thickening of the lower crust and the intrusion of mantle-induced bimodal magmatism. During the post-collisional stage, the large-scale lithospheric delamination provides the magma generation for the Middle-Late Ordovician granitic rocks.  相似文献   

4.
Several volumetrically minor \(\sim \)2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U–Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U–Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high \(\hbox {SiO}_{2}\) and \(\hbox {K}_{2}\hbox {O}\), very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the \(\sim \)3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the \(\sim \)2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.  相似文献   

5.
Western Ghats Belt of western Dharwar Craton is dominated by metavolcanic rocks (komatiites, high-magnesium basalts (HMBs), basalts, boninites) with occasional metagabbros. This rock-suite has undergone post-magmatic alteration processes corresponding to greenschist- to lower-amphibolite facies conditions. Komatiites are Al-depleted, characterized by lower Al2O3/TiO2 and high CaO/Al2O3. Their trace element distribution patterns suggest most of the primary geochemical compositions are preserved with minor influence of post-magmatic alteration processes and negligible crustal contamination. Chemical characteristics of Al-depleted komatiites imply their derivation from deeper upper mantle with/without garnet involvement. HMBs and basalts are differentiated based on their magnesium content. Basalts and occasionally associated gabbroic sills have similar geochemical characteristics. HMB are characterized by light rare earth element (LREE) enrichment, with significant Nb–Ta and Zr negative anomalies. Basalts and associated gabbros display tholeiitic affinity, with LREE-enriched to slightly fractionated heavy rare earth element (HREE) patterns. Boninites are distinctive in conjunction of low abundances of incompatible elements with respect to the studied komatiites. Chondrite-normalized REE patterns of boninites show relative enrichment in LREE and HREE with respect to MREE. Prominent island arc signatures are evident in HMB, basalts, boninites, and gabbros in terms of their Nb–Ta and Zr–Hf negative anomalies, LREE enrichment and HFSE depletion. It is suggested that these HMB–basalts (associated gabbros)–boninites are the products of arc magmatism. Their REE chemistry attests to a gradual transition in melting depth varying between spinel and garnet stability field in an arc regime. The close spatial association but contrasting elemental characteristics of komatiites and HMB–basalts–boninites can be explained by a plume-arc model, in which the ~3.0 Ga komatiites are considered to be the products of plume volcanism in an oceanic setting, while the HMB, basalts, boninites, and associated gabbros were emplaced in a continental margin setting around 2.8–2.7 Ga.  相似文献   

6.
通过研究鲁西七星台地区新太古代变质辉长岩及相关岩石的锆石SHRIMP U-Pb年龄和地球化学组成.它们侵入新太古代表壳岩和TTG岩体.根据12个样品SHRIMP U-Pb锆石定年,可把形成时代划分为3期:2 662~>2 711 Ma、2 608~2 618 Ma和2 508~2 526 Ma.其他样品(进行地球化学分析)的形成时代是根据岩石空间分布、野外特征及与定年样品所代表岩石的关系来确定的.>2.65 Ga变质辉长岩既有来自于富集地幔源区也有来自亏损地幔源区.~2.6 Ga变质辉长岩具平坦型稀土模式,大离子亲石元素富集,Nb、Ta、P亏损,来自亏损地幔源区,可能遭受陆壳物质影响,~2.6 Ga变质辉石岩显示中稀土富集,与单斜辉石堆晶作用有关.~2.5 Ga变质辉长岩存在平坦型-轻微亏损轻稀土和轻稀土富集型两种类型稀土模式.与~2.5 Ga变质辉长岩相比,~2.5 Ga变质辉长闪长岩稀土含量更高,轻重稀土分异程度更高,大离子亲石元素更为富集,Nb、Ta亏损更为明显,是~2.5 Ga辉长质岩浆进一步结晶分异产物.结合前人研究,可得出如下结论.(1)七星台地区存在>2.65 Ga、~2.6 Ga和~2.5 Ga 3期变质辉长岩,其中~2.6 Ga变质辉长岩规模最大;(2)不同时代变质辉长岩地球化学组成特征不同,反映了源区组成和形成过程的复杂性;(3)鲁西地区在新太古代早期(>2.7~2.6 Ga)存在长期连续的基性岩浆作用,可能与地幔岩浆板底垫托有关;(4)在七星台地区首次发现~2.5 Ga辉长岩-辉长闪长岩,为鲁西地区A带广泛存在的~2.5 Ga深熔作用提供了热源来自地幔的直接证据.   相似文献   

7.
The late- to post-collisional stage in orogenic systems is characterized by the coeval existence of bimodal potassic to ultrapotassic magmatic activity related to partial melting of an enriched lithospheric mantle together with crustal derived melts. In this paper, we present new whole rock geochemical analyses combined with zircon and titanite U–Pb and zircon Hf isotopic data from potassic to ultrapotassic rocks from six plutons that occur within the Archean Itacambira-Monte Azul block (BIMA), to discuss their petrogenesis and the tectonic implications for the São Francisco paleocontinent. The new U–Pb ages range from ca. 2.06 Ga to 1.98 Ga and reveal long-lasting potassic magmatism within the BIMA, which is within the late- to- post-collisional stage of the São Francisco paleocontinent evolution. The ultrapotassic rocks are compatible with a fluid-related metasomatized mantle source enriched by previous subduction events, whereas the potassic rocks are bimodal and have a transitional shoshonitic to A-type affinity. These rocks have a hybrid nature, possible related to the mixing between the mafic potassic/ultrapotassic rocks and high temperature crustal melts of the Archean continental crust. Our results also show an increase of within-plate signature towards the younger potassic magmas. The participation of an important Archean crustal component in the genesis of these rocks is highlighted by the common and occasionally abundant occurrence of Archean inherited zircons. The Hf isotopic record shows that most of the zircon inheritance has dominantly subchondritic εHf(t) values, which fits a crustal reworking derivation from a similar Eo- to Paleoarchean precursor crust. However, the presence of juvenile 2.36 Ga zircon inheritance in an ultrapotassic sample reveal the existence of a hidden reservoir that is somewhat similar to the described for the Mineiro Belt in southern São Francisco paleocontinent.  相似文献   

8.
The Hadean and Archean geologic history of the Earth is discussed in the context of available knowledge from different sources: space physics and comparative planetology; isotope geochronology; geology and petrology of Archean greenstone belts (GB) and tonalite-trondhjemite-granodiorite (TTG) complexes; and geodynamic modeling review to analyse plate-tectonic, plume activity, and impact processes. Correlation between the age peaks of terrestrial Hadean-Early Archean zircons and late heavy bombardment events on the Moon, as well as the Hf isotope composition of zircons indicating their mostly mafic sources, hint to an important role of impact processes in the Earth’s history between 4.4 and 3.8 Ga. The earliest continental crust (TTG complexes) formed at 4.2 Ga (Acasta gneisses), while its large-scale recycling left imprint in Hf isotope signatures after 3.75 Ga. The associations and geochemistry of rocks suggest that Archean greenstone belts formed in settings of rifting, ocean floor spreading, subduction, and plume magmatism generally similar to the present respective processes. The Archean history differed in the greater extent of rocks derived from mantle plumes (komatiites and basalts), boninites, and adakites as well as in shorter subduction cycles recorded in alternation of typical calc-alkaline andesite-dacite-rhyolite and adakite series that were generated in a hotter mantle with more turbulent convection and unsteady subduction. The Archean is interpreted as a transient period of small plate tectonics.  相似文献   

9.
Calc-alkaline plutonic rocks, intruded at 3450Ma, comprise a major component of the Shaw Batholith in the Archaean east Pilbara Block, Western Australia. New whole-rock Pb isotopic geochronology confirms the extent of these rocks, but a minor plutonic phase is dated at 3338±52 Ma and represents a second plutonic event of the same age as much of the nearby Mt Edgar Batholith. The Sm----Nd isotopic systematics of the 3450Ma rocks imply their derivation from a heterogeneous source, which probably included a slightly older crustal component as well as a depleted mantle component. The 3338±52 Ma pluton includes components derived from crustal sources older than 3600 Ma. The geochemistry and Sm---Nd isotopic systematics of these rocks are consistent with crustal growth in the early Archaean from upper mantle sources as depleted as the modern upper mantle. The Shaw Batholith calc-alkaline suites exhibit very similar chemical trends on variation diagrams to modern calc-alkaline plutonic rocks which can be modelled by a combination of mixing and fractionation. A suite collected from outcrops displaying prominent igneous layering shows distinct geochemical trends which can be modelled by differentiation into a component enriched in ferromagnesian minerals, principally hornblende, and possibly sphene, magnetite and epidote, and into a leucocratic component containing quartz, plagioclase and K-feld-par. These Archaean calc-alkaline plutonic rocks, in common with rocks from many other Archaean calc-alkaline provinces, exhibit very fractionated REE patterns with depleted HREE contents, a feature considered to result from equilibrium with garnet at depth in lower crustal regions. The geochemistry of the Pilbara Archaean calc-alkaline rocks is identical to the subset of modern continental-margin calc-alkaline plutonic rocks with fractionated REE patterns, such as those from the central and eastern Peninsular Ranges Batholith, western USA. The tectonic setting in which the Archaean calc-alkaline rocks formed is still not known. This reflects both uncertainty associated with the petrogenesis and environments of modern calc-alkaline rocks, as well as the limited knowledge of the precise timing and relationships of plutonic, depositional and tectonic events in the Pilbara Archaean.  相似文献   

10.
骆文娟  张招崇  侯通  王萌 《岩石学报》2011,27(10):2947-2962
茨达复式岩体位于中国西南扬子地台西缘的攀西裂谷内,其岩性从基性到酸性连续变化,SiO2含量为40.06% ~68.54%,但以基性和酸性岩石为主,中性岩石较少,而且非常不均匀,通常具有斑杂构造特征.从基性岩到酸性岩,各岩石样品由轻稀土弱富集型变为较强富集型.微量元素表现为酸性岩中Rb、Th、K、La、Ce、Pb、Nd、Zr、Hf、Sm呈正异常和Ba、Nb、Ta、Sr、P、Ti的负异常;基性岩除Ti负异常和Pb正异常外,其它异常不明显;中性岩具有Ti、Sr负异常和Pb正异常,其它特征介于基性岩和酸性岩石之间.野外和岩相学特征明显指示出中性岩石具有混合特征.酸性端元岩浆准铝质的特征以及相对低的SiO2含量指示其起源于玄武质下地壳的部分熔融,而基性端元岩浆的地球化学特征以及高温特征暗示着其起源于地幔柱源区.锆石U-Pb年龄数据表明,该复式岩体中基性端元LA-MC-ICP-MS U-Pb锆石年龄为243.76±0.77Ma,酸性端元年龄为240.5±0.76Ma,可能代表了峨眉山大火成岩省岩浆活动的尾声阶段.  相似文献   

11.
In Adola, southern Ethiopia, mafic and ultramafic igneous rocks occur in narrow, 4–10 km wide, north-south-trending belts bounded by high-grade gneisses and migmatites. The mafic/ultramafic rocks are complexly deformed and metamorphosed in greenschist to lower amphibolite facies and are thought to be tectonically dismembered parts of an ophiolite complex. Preliminary geochemical and geochronological data highlight that the high-grade rocks in southern Ethiopia and northern Kenya include a significant portion of juvenile rocks that were accreted at the same time as ophiolitic rocks at 885-765 Ma. This is also the time of widespread oceanic magmatism and closure in the Arabian-Nubian Shield to the north.The Adola mafic rocks were previously described as island arc tholeiites and mid-ocean ridge basalts (MORB). New chemical analyses on the Megado belt rocks reveal the presence of boninites and related dacites interspersed with tholeiitic rocks. The Adola boninites are similar to the Cambrian boninites in western Tasmania in having relatively low Zr/Sm (≤32). Boninites with similarly low ratios have not been reported from elsewhere.The Adola tholeiites have high Ti/Zr (150–300). Mixing between tholeiite and boninite magmas may have resulted in elevated Ti/Zr (80–126) in some Adola boninites. Otherwise, Ti/Zr in the latter is low (20–40). Low Ti/Zr is characteristic of Tertiary boninites in the west Pacific. The fact that both Ti/Eu and Zr/Sm increase from the Adola and Tasmania type to the Tertiary boninites at constant Ti/Zr suggests that Ti might be an element that is also metasomatically added to the source of boninites and raises doubts about the role of amphibole in boninite petrogenesis.  相似文献   

12.
华南板块西南缘、越北地块以北桂西那坡县城以西及西南一带发育一套晚二叠世基性岩,由层状、似层状次火山岩相辉绿岩、辉绿玢岩及球状岩组成。根据岩石地球化学特征,那坡基性岩可划分为高Ti(TiO_22.8%和Ti/Y500)和低Ti两部分。高Ti基性岩为碱性玄武岩,而低Ti基性岩为拉斑玄武岩。与低Ti基性岩相比,高Ti基性岩整体具有相对较低的SiO_2、MgO和较高的FeO_t、P_2O_5,轻、重稀土分馏明显,富集大离子亲石元素(LILE)和高场强元素(HFSE),显示出似OIB地球化学特征,与峨眉山高Ti玄武岩具高度亲缘性;低Ti基性岩具有相对较高的SiO_2、MgO和较低的FeO_t、P_2O_5,稀土配分曲线较平坦,富集LILE,严重亏损HFSE(Nb、Ta),与岛弧玄武岩地球化学特征类似。从微量元素比值及相关图解对岩浆源区和构造环境判别,那坡高Ti基性岩来自富集OIB地幔源区,而低Ti基性岩兼具OIB和岛弧岩浆源区的过渡特征。结合岩石地球化学特征及区域地质背景,认为那坡高Ti基性岩可能为峨眉山地幔柱岩浆作用的产物,低Ti基性岩为古特提斯俯冲与峨眉山地幔柱共同作用的产物,揭示了那坡地区晚二叠世同时受到峨眉山地幔柱和古特提斯俯冲相互作用的影响。  相似文献   

13.
Boninites as windows into trace element mobility in subduction zones   总被引:3,自引:0,他引:3  
Boninites are subduction-related rocks originating from re-melting of highly depleted mantle sources left after extraction of tholeiitic melts. Due to their depleted nature, the incompatible trace element inventory of boninites is virtually entirely inherited from slab components without a significant contribution from the refractory mantle wedge. Thus, boninites constitute an excellent window into processes controlling trace element mobilization at the slab-mantle wedge interface. In order to constrain the behaviour of trace elements in subduction zones with a special emphasis on high field strength elements, we analyzed low-Ca boninites and associated tholeiitic basalts from Cape Vogel, Papua New Guinea (PNG) and compare them with compositions of high-Ca boninites and associated tholeiitic basalts from Cyprus. High-precision HFSE (Nb, Ta, Zr, Hf, W) concentration data of the boninites and associated tholeiitic basalts were obtained by isotope dilution. Major, trace element, and Sr-Nd-Hf-Pb isotope compositions clearly document a significant contribution of slab-derived melts involved in the petrogenesis of the PNG boninites, whereas only fluid-like subduction components were involved in the petrogenesis of the PNG basalts and the Cyprus suite. Low-Ca boninites from PNG are derived from a more refractory mantle source (∼21% depletion) than the high-Ca boninites from Cyprus (∼11% depletion) and their respective tholeiitic precursors (<10% depletion). In agreement with the more depleted nature of their mantle source, boninites exhibit a significantly stronger overprint by slab components. High-precision HFSE data indicate that, in comparison to LILE, a somewhat lower but measurable mobilization of all investigated HFSE in both slab-derived fluids and melts is evident. Modelling calculations demonstrate that the subduction components dominate the LILE budget and also largely control LREE and HFSE abundances in the boninite sources. Notably, the increasing influence of slab-derived fluids results in a decrease of the negative Nb-Ta anomaly, most likely reflecting a similar mobility of Nb-Ta and LREE at higher pressures near the critical point of fluid-melt miscibility. Ratios of Zr/Hf and Nb/Ta in the melt-like slab components dominating in the sources of the PNG boninites were probably fractionated in equilibrium with garnet-amphibolitic mafic oceanic crust. HFSE ratios in the Cyprus boninites are best explained by dehydration of subducted pelagic sediments in the absence of Ti-rich phases such as rutile. Our results also confirm previous assertions that the mobility of HFSE decreases in the order Sb > W-Mo > Nb-Ta > Zr-Hf. Furthermore, Mo-W systematics may provide a potential novel tracer for the amount, composition and redox state of subducted pelagic sediments that contribute to the geochemical budget of intra-oceanic arc systems.  相似文献   

14.
The intracratonic, 2.06 Ga volcanic rocks of the Rooiberg Group of southern Africa consist of nine magma types, varying in composition from basalt to rhyolite. Basalts and andesites, intercalated with dacites and rhyolites, are found towards the base; rhyolite is the chief magma composition in the upper succession. The absence of compositions intermediate to the magma types and variations in major and trace element concentrations suggest that fractional crystallization was not prominent in controlling magma compositions. REE patterns are comparable for all magma types and concentrations increase for successively younger magmas; LREE show enriched patterns and HREE are flat. Elevated Sri-ratios and high concentrations of elements characteristically enriched in the crust suggest that the Rooiberg magmas were crustally contaminated or derived from crustal material. Some Rooiberg features are related to the intrusive events of the Bushveld complex.Petrogenesis of both the Rooiberg Group and the mafic intrusives of the Bushveld complex is linked to a mantle plume, melting at progressively higher crustal levels. The basal Rooiberg magmas have undergone a complex history of partial melting, magma mixing and crustal contamination. Crustal melts extruded as siliceous volcanic flows to form the Upper Rooiberg Group, simultaneously intruding at shallow levels as granophyres. Crustally contaminated plume magma synchronously intruded beneath the Rooiberg Group to produce the mafic rocks of the Rustenburg Layered Suite. Granite intrusions terminated the Bushveld event. The Bushveld plume was short-lived, which conforms, together with other features, with younger, voluminous plume environments.  相似文献   

15.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

16.
A number of Paleoproterozoic mafic dykes are reported to intrude volcano-sedimentary sequences of the Mahakoshal supracrustal belt. They are medium to coarse-grained and mostly trend in ENE-WSW to E-W. Petrographically they are metadolerite and metabasite. Geochemical compositions classify them as sub-alkaline basalts to andesites with high-iron tholeiitic nature. Both groups, i.e. metabasites and metadolerites, show distinct geochemical characteristics; high-field strength elements are relatively higher in metadolerites than metabasites. This suggests their derivation from different mantle melts. Chemistry does not support any possibility of crustal contamination. Trace element modeling advocates that metabasite dykes are derived from a melt originated through ∼20% melting of a depleted mantle source, whereas metadolerite dykes are probably derived from a tholeiitic magma generated through <10% melting of a enriched mantle source. Chemistry also reveals that the studied samples are derived from deep mantle sources. HFSE based discrimination diagrams suggest that metabasite dykes are emplaced in tectonic environment similar to the N-type mid-oceanic ridge basalts (N-MORB) and the metadolerite dykes exhibit tectonic setting observed for the within-plate basalts. These inferences show agreement with the available tectonic model presented for the Mahakoshal supracrustal belt. The Chitrangi region experienced N-MORB type mafic magmatism around 2.5 Ga (metabasite dykes) and within-plate mafic magmatism around 1.5–1.8 Ga (metadolerite dykes and probably other alkaline and carbonatite magmatic rocks).  相似文献   

17.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

18.
Major and trace element and Sr–Nd–Pb isotopic datafor mafic volcanic rocks are used to assess the number of mantleplumes contributing to the Tertiary–Holocene magmatismof the Kenya Rift Valley, current estimates of which vary fromnone to three. Rocks ranging in composition from nepheliniteto hypersthene-normative basalt have been sampled from threelithospheric zones: the Tanzanian craton, the craton marginreworked during the late Proterozoic, and the Mozambique mobilebelt. The magmas are interpreted as the products of variabledegrees of partial melting within the spinel–garnet peridotitetransition zone. Trace element and isotopic compositions fromall three zones are broadly similar to those of oceanic islandbasalts, but there is considerable compositional variation,which is related to a strong overprint from the lithosphereon plume-derived melts. Sr and Nd isotopic ratios provide theonly clear distinction between magmatic rocks from the threelithospheric domains. Within each setting, mafic magmatism hastended to become less silica undersaturated with time, and atany one locality magmatism has migrated towards the centre ofthe rift. Magmas may have formed as a result of the infiltrationof plume-derived melts into the base of the lithosphere. Theextent of interaction of inferred plume melts with the lithospherehas not varied systematically in time or space. The plume componentappears to be similar to the source of oceanic island basalts. KEY WORDS: Kenya Rift Valley; mantle plumes; geochemistry; metasomatism  相似文献   

19.
Peridotitic sulphide inclusions in diamonds from the central Slave craton constrain the age and origin of their subcontinental lithospheric mantle (SCLM) sources. These sulphides align with either a ca. 3.5 Ga (shallow SCLM) or a ca. 3.3 Ga isochron (deep SCLM) on a Re–Os ischron diagram, with variably enriched initial 187Os/188Os. Since some Archaean to recent plume-derived melts carry a subducted crust (eclogite) signature and some cratonic SCLM may have been generated in plumes by extraction of komatiitic liquids, we explain these data by subduction of evolved lithospheric material (shallow SCLM) and melting in a hybrid mantle plume that contains domains of recycled eclogite (deep SCLM), respectively. In upwelling hybrid mantle, eclogite-derived melts react with olivine in surrounding peridotites to form aluminous orthopyroxene, convert peridotite to pyroxenite and confer their crustal isotope signatures. We suggest that it is subsequent to orthopyroxene enrichment of peridotite in an upwelling plume that partial melting of this Al- and Si- enriched source generated komatiites and complementary ultradepleted cratonic mantle residues. Although subduction is needed to explain some cratonic features, melting of a hybrid plume source satisfies several key observations: (1) suprachondritic initial 187Os/188Os in subsets of lithospheric mantle samples and in some coeval Archaean komatiites; (2) variable enrichment of cratonic mantle by high-temperature aluminous orthopyroxene; (3) high Mg# combined with high orthopyroxene content in cratonic mantle due to higher melt productivity of an Al- and Si-richer source; (4) variable orthopyroxene enrichment possibly linked to varying mantle potential temperatures (Tp), plume buoyancy and resultant eclogite load and/or variable availability of subducted material in the source; and (5) absence of younger analogues due to a secular decrease in Tp. Most importantly, this model also alleviates a mass balance problem, because it predicts a hybrid mantle source with variably higher SiO2 and Al2O3 than primitive mantle, and, contrary to a primitive mantle source, is able to reconcile compositions of komatiites and complementary cratonic mantle residues.  相似文献   

20.
The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored. The Singhbhum craton includes the Banded Iron Formation (BIF) associated mafic lavas, MORB-like basic and komatiitic ultrabasic bimodal volcanism — documented as Dalma volcanics, Dhanjori lavas, and the Proterozoic Newer dolerite dykes. Three different types of REE fractionation patterns are observed in the BIF-associated mafic lavas. These are the REE unfractionated type is more depleted than N-MORB and some lavas with boninitic type of REE distribution. MORB-like basic and komatiitic ultrabasic (Dalma volcanics) are emplaced within the Proterozoic Singhbhum Basin (PSB). The vista of magmatism in the basin was controlled by a miniature spreading centre represented by the mid-basinal Dalma volcanic ridge. The volcano-sedimentary basinal domain of Dhanjori emerged at the interface of two subprovinces (viz. the mobile volcano-sedimentary belt of PSB and rigid granite platform) under unique stress environment related to extensional tectonic regime. Trace element distribution in Dhanjori lavas is remarkably similar to that in PSB minor intrusions and lavas (except a Ta spike in the latter). The Proterozoic Newer dolerite dykes within Singhbhum nucleus manifest an unusually wide spam of intrusive activity (ca 2100 Ma to 1100 Ma) and unexpectedly uniform mantle melting behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号