首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An analysis of the 234Th method for determining the export flux of particulate organic carbon (PPOC) from the upper ocean using in situ pumps or water bottles shows that the accuracy of the method (the ratio of the experimental value of PPOC divided by the true POC flux, FPOC), defined as the p-ratio, is equal to the mean settling velocity of particulate 234Th divided by that of POC. Therefore, PPOC is equivalent to the true POC flux (FPOC) and the p-ratio is equal to unity if, and only if, POC and particulate 234Th have the same mean sinking velocities. A simple particle settling model is discussed that invokes Stokes’ Law settling velocities, volume:surface area (V:SA) fractionation of C:234Th and two assemblages of particles having different sizes and densities. The model is used to illustrate the ranges of parameter values that conform to values of the p-ratio sufficiently close to unity that the experimentally determined POC flux can be considered to be an accurate representation of the true POC flux.Despite the over-simplification of real systems implicit in the model, the results suggest that p-ratios<1, equivalent to an under-estimate of the POC flux, are representative of single particle settling regimes in which the larger particles dominate the vertical flux. This follows from the assumption that the ratio of C/234Th on particles is governed by the volume to surface area (V:SA) ratio of the particles. This results in a greater proportion of 234Th compared to C being associated with the smaller, more slowly settling particles and, as a result, normalization of the POC flux to the 234Th flux provides an under-estimate of the former quantity. However, when the smaller particle assemblage dominates the vertical flux, as could occur in open ocean regimes having high aeolian inputs of dense, rapidly settling, inorganic particles, then the p-ratio could exceed unity (p-ratio >1) resulting in an over-estimate of the POC flux using the 234Th method. High levels of flocculation associated with phytoplankton blooms in productive regions of the ocean are likely to produce p-ratios approaching unity, because flocs would tend to preserve the V:SA partitioning of the original particle size distribution and thereby minimize differences in the mean settling speeds of POC and particulate 234Th (Waite, A.W., Hill, P.S., 2006. Flocculation, phytoplankton and the accuracy of 234Th-based estimates of the vertical flux of particulate organic carbon in the sea. Marine Chemistry in press). Selective sampling of the large particle fraction using, for example, 53-μm screens can produce a more accurate estimate of the true POC flux, but may not entirely shift the p-ratio to a value of unity.  相似文献   

2.
《Marine Chemistry》2002,80(1):11-26
Profiles of particulate and dissolved 234Th (t1/2=24.1 days) in seawater and particulate 234Th collected in drifting traps were analyzed in the Barents Sea at five stations during the ALV3 cruise (from June 28 to July 12, 1999) along a transect from 78°15′N–34°09′E to 73°49′N–31°43′E. 234Th/238U disequilibrium was observed at all locations. 234Th data measured in suspended and trapped particles were used to calibrate the catchment efficiency of the sediment traps. Model-derived 234Th fluxes were similar to 234Th fluxes measured in sediment traps based on a steady-state 234Th model. This suggests that the sediment traps were not subject to large trapping efficiency problems (collection efficiency ranges from 70% to 100% for four traps). The export flux of particulate organic carbon (POC) can be calculated from the model-derived export flux of 234Th and the POC/234Th ratio. POC/234Th ratios measured in suspended and trapped particles were very different (52.0±9.9 and 5.3±2.2 μmol dpm−1, respectively). The agreement between calculated and measured POC fluxes when the POC/234Th ratio of trapped particles was used confirms that the POC/234Th ratio in trap particles is representative of sinking particles. Large discrepancies were observed between calculated and measured POC fluxes when the POC/234Th ratio of suspended particles was used. In the Barents Sea, vertical POC fluxes are higher than POC fluxes estimated in the central Arctic Ocean and the Beaufort Sea and lower than those calculated in the Northeast Water Polynya and the Chukchi Sea. We suggest that the latter fluxes may have been strongly overestimated, because they were based on high POC/234Th ratios measured on suspended particles. It seems that POC fluxes cannot be reliably derived from thorium budgets without measuring the POC/234Th ratio of sediment trap material or of large filtered particles.  相似文献   

3.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   

4.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

5.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

6.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

7.
Measurements of 234Th/238U disequilibria and particle size-fractionated (1, 10, 20, 53, 70, 100 μm) organic C and 234Th were made to constrain estimates of the export flux of particulate organic C (POC) from the surface waters of the Ligurian, Tyrrhenian and Aegean Seas in March–June 2004. POC exported from the surface waters (75–100 m depth) averaged 9.2 mmol m−2 d−1 in the Ligurian and Tyrrhenian Seas (2.3±0.5–14.9±3.0 mmol m−2 d−1) and 0.9 mmol m−2 d−1 in the Aegean Sea. These results are comparable to previous measurements of 234Th-derived and sediment-trap POC fluxes from the upper 200 m in the Mediterranean Sea. Depth variations in the POC/234Th ratio suggest two possible controls. First, decreasing POC/234Th ratios with depth were attributed to preferential remineralization of organic C. Second, the occurrence of maxima or minima in the POC/234Th ratio near the DCM suggests influence by phytoplankton dynamics. To assess the accuracy of these data, the empirical 234Th-method was evaluated by quantifying the extent to which the 234Th-based estimate of POC flux, PPOC, deviates from the true flux, FPOC, defined as the p-ratio (p-ratio=PPOC/FPOC=STh/SPOC, where S=particle sinking rate). Estimates of the p-ratio made using Stokes’ Law and the particle size distributions of organic C and 234Th yield values ranging from 0.93–1.45. The proximity of the p-ratio to unity implies that differences in the sinking rates of POC- and 234Th-carrying particles did not bias 234Th-normalized POC fluxes by more than a factor of two.  相似文献   

8.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

9.
We determined the sensitivity of the calculated sinking flux of 234Th in the central equatorial Pacific to physical processes and scavenging mechanisms by imposing a meridional and vertical advection and diffusion field on a simple dissolved and particulate 234Th cycle. We used the model to estimate the efficiency with which the 234Th deficiency relative to 238U reflected the predicted sinking flux of 234Th on particles and compared our results with 234Th data taken during the JGOFS-EqPac 1992 Survey II Cruise. 234Th deficiencies near the equator were strongly affected by both vertical advection and horizontal diffusion. The model 234Th deficiency at the equator underestimated the model 234Th sinking flux by 144% in neglecting advection and diffusion in the presence of strong upwelling at the equator. The model 234Th deficiency at the equator corrected for advection overestimated the sinking flux of 234Th by 33% in neglecting horizontal diffusion. Analysis of the scavenging mechanism suggests that, during situations of export governed by rapidly sinking particles, 234Th-based estimates of particle export are only half as sensitive to advection compared to situations of export governed by slowly sinking particles. Given that results using the mechanism of slowly sinking particles compare better with the observed 234Th deficiency and calculated meridional 234Th fluxes at the equator than the mechanism of rapidly sinking particles, we consider the mechanism of slowly sinking particle more appropriate for this region. In agreement with previous studies based on observed 234Th gradients, this study supports the incorporation of vertical advection terms in the 234Th balance to estimate particulate carbon export at the equator but suggests that this method may have overestimated the sinking flux at the equator during EqPac Survey II by 0–63% due to the role of horizontal diffusion.  相似文献   

10.
An extensive 234Th data set was collected at two sites in the North Pacific: ALOHA, an oligotrophic site near Hawaii, and K2, a mesotrophic HNLC site in the NW Pacific as part of the VERTIGO (VERtical Transport In the Global Ocean) study. Total 234Th:238U activity ratios near 1.0 indicated low particle fluxes at ALOHA, while 234Th:238U ~0.6 in the euphotic zone at K2 indicated higher particle export. However, spatial variability was large at both sites—even greater than seasonal variability as reported in prior studies. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. At K2, there was a decrease in export flux and increase in 234Th activities over time associated with the declining phase of a summer diatom bloom, which required the use of non-steady state models for flux predictions. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. High vertical resolution profiles show narrow layers (20–30 m) of excess 234Th below the deep chlorophyll maximum at K2 associated with particle remineralization resulting in a decrease in flux at depth that may be missed with standard sampling for 234Th and/or with sediment traps. Also, the application of 234Th as POC flux tracer relies on accurate sampling of particulate POC/234Th ratios and here the ratio is similar on sinking particles and mid-sized particles collected by in-situ filtration (>10–50 μm at ALOHA and >5–350 μm at K2). To further address variability in particle fluxes at K2, a simple model of the drawdown of 234Th and nutrients is used to demonstrate that while coupled during export, their ratios in the water column will vary with time and depth after export. Overall these 234Th data provide a detailed view into particle flux and remineralization in the North Pacific over time and space scales that are varying over days to weeks, and 10's–100's km at a resolution that is difficult to obtain with other methods.  相似文献   

11.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

12.
Uncertainties in the determinations of particulate organic carbon flux from measurements of the disequilibrium between 234Th and its mother isotope uranium depend largely on the determination of the organic carbon to 234thorium (OC : 234Th) ratio. The variability of the OC : 234Th ratio in different size fractions of suspended matter, ranging from the truly dissolved (< 3 or 10 kDa) fraction to several millimeter sized marine snow, as well as from sediment trap material was assessed during an eight-day cruise off the coast of California in Spring 1997. The affinity of polysaccharide particles called TEP (transparent exopolymer particles) and inorganic clays to 234Th was investigated through correlations. The observed decrease in the OC : 234Th ratio with size, within the truly dissolved to small particle size range, is consistent with concepts of irreversible colloidal aggregation of non-porous nano-aggregates. No consistent trend in the OC : 234Th ratio was observed for particles between 1 or 10 to 6000 μm. Origin and fate of marine particles belonging to this size range are diverse and interactions with 234Th too complex to expect a consistent relationship between OC : 234Th ratio and size, if all categories of particles are included. The relationship between OC and 234Th was significant when data from the truly dissolved fraction were excluded. However, variability was very large, implying that OC flux calculations using different collection methods (e.g. sediment trap, Niskin bottles or pumps) would differ significantly. Therefore a large uncertainty in OC flux calculations based on the 234Th method exist due to individual decisions as to which types or size classes of particles best represent sinking material in a specific area. Preferential binding of 234Th to specific substance classes could explain the high variability in the relationship between OC and 234Th. At 15 m, in the absence of lithogenic material, the OC : 234Th ratio was a function of the fraction of TEP or TEP-precursors in OC, confirming that acidic polysaccharides have a high affinity for 234Th and that TEP carry a ligand for 234Th. Preferential binding to TEP might change distribution patterns of 234Th considerably, as TEP may sink when included in large aggregates, or remain suspended or even ascend when existing as individual particles or microaggregates. In the presence of lithogenic matter, at depths below 30 m, the ratio between 234Th and OC was linearly related to the ratio between alumino silicates and C. The affinity of inorganic substances to 234Th is known to be relatively low, suggesting that a coating of acidic polysaccharides was responsible for the apparently high affinity between 234Th and lithogenic material. Overall, OC : 234Th ratios of all material collected during this investigation can best be explained by differential binding of 234Th to both TEP and TEP-precursors, as well as to lithogenic minerals, which were very abundant in an intermediate nepheloid layer between 50 and 90 m.  相似文献   

13.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

14.
Dissolved and particulate 234Th activities in surface seawater were determined at 27 stations along the coastline of western Taiwan during 19–23 November 2004. Contrasting scavenging settings were observed between the northern and southern regimes of the nearshore water off western Taiwan, separated by the Cho-Shui River. The northern regime is characterized by a large quantity of suspended load contributed by northward transport of a suspension plume from the Cho-Shui River, while the southern regime, low in suspended load and high in chlorophyll concentration, is a system controlled by biological activity. A scavenging model that takes account of the physical transport was used to estimate the 234Th budget in order to estimate the scavenging and removal rates from the nearshore water. The scavenging and removal rates ranged from 21 to 127 dpm m−3d−1 and from 36 to 525 dpm m−3d−1, for dissolved and particulate 234Th, respectively. The removal fluxes of particulate organic carbon (POC) and particulate organic nitrogen (PON) were estimated by multiplying the particulate 234Th removal flux to the organic carbon/234Th and nitrogen/234Th ratios in suspended particles, which ranged from 4.5 to 275.2 mmol-C m−2d−1 and from 1.3 to 50.1 mmol-N m−2d−1, respectively. These fluxes resulted in residence times of 1∼20 days for the POC in the surface water of nearshore water off western Taiwan.  相似文献   

15.
Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C / 234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C / 234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C / 234Th either increases or is relatively invariant with increasing particle size (size classes > 1 to 100s μm). Observations also suggest that C / 234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2–3). We recommend sampling for C / 234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C / 234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.  相似文献   

16.
Th sorption and export models in the water column: A review   总被引:2,自引:3,他引:2  
Over the past few decades, the radioisotope pair of 238U / 234Th has been widely and increasingly used to describe particle dynamics and particle export fluxes in a variety of aquatic systems. The present paper is one of five review articles dedicated to 234Th. It is focused on the models associated with 234Th whereas the companion papers (same issue) are focused on present and future methodologies and techniques (Rutgers van der Loeff et al.), C / 234Th ratios (Buesseler et al.), 234Th speciation (Santschi et al.) and present and future applications of 234Th [Waples, J.T., Benitez-Nelson, C.R., Savoye, N., Rutgers van der Loeff, M., Baskaran, M., Gustafsson, Ö., this issue. An Introduction to the application and future use of 234Th in aquatic systems. Marine Chemistry, FATE special issue]. In this paper, we review current 234Th scavenging models and discuss the relative importance of the non-steady state and physical terms associated with the most commonly used model to estimate 234Th flux. Based on this discussion we recommend that for future work the use of models should be accompanied by a discussion of the effect that model and data uncertainty have on the model results. We also suggest that future field work incorporate repeat occupations of sample sites on time scales of 1–4 weeks in order to evaluate steady state versus non-steady state estimates of 234Th export, especially during high flux events (> ca. 800 dpm m− 2 d− 1). Finally, knowledge of the physical oceanography of the study area is essential, particularly in ocean margins and in areas of established upwelling (e.g., Equatorial Pacific). These suggestions will greatly enhance the application of 234Th as a tracer of particle dynamics and flux in more complicated regimes.  相似文献   

17.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

18.
The short-lived thorium isotope 234Th (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of 234Th in both marine and freshwater systems. The original 234Th method is labor intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of 234Th from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate 234Th analytical technique for a specific aquatic regime and known sampling constraints.  相似文献   

19.
234Th (T1/2=24.1 d) and 210Po (T1/2=138.4 d) are particle reactive radioisotopes that are used as tracers for particle cycling in the upper ocean. Particulate organic carbon (POC) export has frequently been estimated using 234Th/238U disequilibrium. Recent evidence suggests that 210Po/210Pb disequilibrium may be used as an additional tool to examine particle export, given the direct biological uptake of 210Po into cellular material. Differences in these two radioisotope pairs with regard to their half-lives, particle reactivity and scavenging affinity in seawater should provide complementary information to be obtained on the processes occurring in the water column. Here, we review eight different studies that have simultaneously used both approaches to estimate POC export fluxes from the surface ocean. Our aim is to provide a complete “dataset” of all the existing POC flux data derived from the coupled use of both 234Th and 210Po and to evaluate the advantages and limitations of each tracer pair. Our analysis suggests that the simultaneous use of both radiotracers provides more useful comparative data than can be derived from the use of a single tracer alone. The difference in half-lives of 234Th and 210Po enables the study of export production rates over different time scales. In addition, their different biogeochemical behaviour and preferred affinity for specific types of particles leads to the conclusion that 234Th is a better tracer of total mass flux, whereas 210Po tracks POC export more specifically. The synthesis presented here is also intended to provide a basis for planning future sampling strategies and promoting further work in this field to help reveal the more specific application of each tracer under specific water column biogeochemistries.  相似文献   

20.
234Th was used to quantify sinking fluxes and residence times of particles in surface waters of the north-western Mediterranean Sea. Measurements of dissolved and particulate 234Th were made at the DYFAMED station (43°25′N–7°51′E, JGOFS-France program). Sampling covered 1 year on four cruises in 1994 (February 9, April 29, June 3, October 1) and focused on a transition period in mid-spring with six repeated profiles collected during May 1995. 234Th was nearly in equilibrium with its parent 238U most of the year, except in spring. The intensive sampling in May shows a rapid evolution throughout the month from a moderate 234Th deficit to near-equilibrium values. The time-series of 234Th were treated with steady-state and non-steady-state models. 234Th particulate fluxes clearly indicate large variability in export, with the highest values observed in spring. Particle residence times in the upper 40 m range from <10 to >250 days, and could increase by a factor of 10 within 2 weeks. POC fluxes from the upper 40 m and export ratios (ThE: ratio of 234Th-derived POC export to primary production), derived from the 234Th/238U disequilibrium in the water column and POC/234Th ratio on trapped material, decrease from about 9.5 mmol C m−2 d−1 and >22% in early May to less than 5 mmol C m−2 d−1 and 15% after mid-May. The 234Th-derived information is in agreement with the annual variations in Mediterranean Sea productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号