首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We present time-resolved optical spectroscopy and broad-band photometry of the rapidly rotating southern K0 dwarf star AB Doradus, obtained during 1994 November. The data were obtained as part of a collaboration dedicated to MUlti-SIte COntinuous Spectroscopy (MUSICOS), and entailed coordinated observations on three continents to obtain the fullest phase coverage possible subject to limitations of local weather conditions. The Doppler images from the three consecutive nights of the run show excellent mutual agreement, with a dark polar cap and numerous intermediate- and low-latitude features. Simultaneous optical photometry showed numerous short-duration U -band flares, and two longer duration optical flares with durations of the order of hours. The latter produced broad-band continuum enhancements throughout the optical spectrum. Where simultaneous spectroscopy was available, both types of flare were seen to have counterparts in H and the Ca  ii H line. Simultaneous time-resolved ultraviolet spectroscopy from the Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope , reported elsewhere, shows that at least one of the short-duration U -band flares was also observed in C  iv with the GHRS. Time-series H spectra showed significant evolution of the circumstellar prominence system over five consecutive stellar rotations. One prominence underwent a dramatic increase in distance from the stellar rotation axis. We speculate that this event may have been associated with one of the long-duration flares.  相似文献   

2.
We present Doppler images of the young K5V–K7V rapid rotator LO Peg from seven nights of continuous spectroscopy obtained in 1998 from July 04 to July 10. The images reveal the presence of a strong polar cap with appendages extending to mid-latitudes, but no star-spots are seen below 15°. We briefly discuss the distribution of spots in light of recent flux transport simulations, which are able to reproduce the observed latitude dependence. With the full time series of spectra, of which 314 are useful, many phases are observed three times over the seven nights of observations. Using star-spots as tracers of a solar-like latitudinal differential rotation in our image reconstructions, we find that the equatorial regions complete one more rotation than the polar regions every  181 ± 35 d  . LO Peg is the second coolest star for which such a measurement has been made using indirect imaging methods. The degree of latitudinal shear is less than that seen in G and early K dwarfs, suggesting a trend in which differential rotation decreases with stellar mass in (pre-)main-sequence objects.  相似文献   

3.
We present the first measurements of surface differential rotation on a pre-main-sequence binary system. Using intensity (Stokes I) and circularly polarized (Stokes V) time-series spectra, taken over 11 nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator–pole lap times as determined from the intensity spectra are 80 d for the primary star and 163 d for the secondary. Similarly, for the magnetic spectra we obtain equator–pole lap times of 44 and 71 d, respectively, showing that the shearing time-scale of magnetic regions is approximately half of that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral-type main-sequence single stars. The results for HD 155555 are therefore in contrast to those found in other, more evolved, binary systems where negligible or weak differential rotation has been discovered. We discuss two possible explanations for this: first that at the age of HD 155555 binary tidal forces have not yet had time to suppress differential rotation and secondly that the weak differential rotation previously observed on evolved binaries is a consequence of their large convection zone depths. We suggest that the latter is the more likely solution and show that both temperature and convection zone depth (from evolutionary models) are good predictors of differential rotation strength. Finally, we also examine the possible consequences of the measured differential rotation on the interaction of binary star coronae.  相似文献   

4.
In this paper, we present a new method for measuring the surface differential rotation of cool stars with rotation periods of a few days, for which the sparse phase coverage achievable from single-site observations generally prevents the use of more conventional techniques. The basic idea underlying this new analysis is to obtain the surface differential rotation pattern that minimizes the information content of the reconstructed Doppler image through a simultaneous fit of all available data.
Simulations demonstrate that the performance of this new method in the case of cool stars is satisfactory for a variety of observing strategies. Differential rotation parameters can be recovered reliably as long as the total data set spans at least 4 per cent of the time for the equator to lap the pole by approximately one complete cycle. We find in particular that these results hold for potentially complex spot distributions (as long as they include a mixture of low- and high-latitude features), and for various stellar inclination angles and rotation velocities. Such measurements can be obtained from either unpolarized or polarized data sets, provided their signal-to-noise ratio is larger than approximately 500 and 5000 per 2 km s−1 spectral bin, respectively.
This method should therefore be very useful for investigating differential rotation in a much larger sample of objects than what has been possible up to now, and should hence give us the opportunity of studying how differential rotation reacts to various phenomena operating in stellar convective zones, such as tidal effects or dynamo magnetic field generation.  相似文献   

5.
Simultaneous X-ray and extreme ultraviolet (EUV) ( ROSAT XRT and WFC All-Sky Survey) observations of the highly active dMe flare stars YY Gem and AU Mic show that the two stars displayed an unusual type of flaring behaviour. We detect several X-ray and EUV flares superimposed on an enhanced and smoothly varying quiescent background. The two large impulsive-type X-ray flares on YY Gem reach peak X-ray luminosities of     and we estimate that they had similar integrated luminosities (∼6–8×1033 erg). AU Mic also produced several X-ray and EUV flares, with one very impulsive flare producing a 10-fold increase in XRT count rate. This flare was even larger than the YY Gem flares (peak L X of     and integrated L X of    
The     ratio for both stars is at the 'saturation' limit found in rapidly rotating dwarfs and the most active RS CVn stars. We suggest that the gradually varying components are the result of a period of continuous, unresolved flaring activity. Alternatively, they may be the result of the emergence and subsequent decay of a new magnetic active region on the stellar surface of these stars.  相似文献   

6.
The X-ray binary system GX 301−2 consists of a neutron star in an eccentric orbit accreting from the massive early-type star Wray 977. It has previously been shown that the X-ray orbital light curve is consistent with the existence of a gas stream flowing out from Wray 977 in addition to its strong stellar wind. Here, X-ray monitoring observations by the Rossi X-ray Timing Explorer ( RXTE )/All-Sky Monitor and pointed observations by the RXTE /Proportional Counter Array over the past decade are analysed. We analyse both the flux and column density dependence on orbital phase. The wind and stream dynamics are calculated for various system inclinations, companion rotation rates and wind velocities, as well as parametrized by the stream width and density. These calculations are used as inputs to determine both the expected accretion luminosity and the column density along the line-of-sight to the neutron star. The model luminosity and column density are compared to observed flux and column density versus orbital phase, to constrain the properties of the stellar wind and the gas stream. We find that the change between bright and medium intensity levels is primarily due to decreased mass loss in the stellar wind, but the change between medium and dim intensity levels is primarily due to decreased stream density. The mass-loss rate in the stream exceeds that in the stellar wind by a factor of ∼2.5. The quality of the model fits is better for lower inclinations, favouring a higher mass for Wray 977 in its allowed range of  40–60 M  .  相似文献   

7.
DG Leo is a spectroscopic triple system composed of three stars of late-A spectral type, one of which was suggested to be a δ Scuti star. Seven nights of observations at high spectral and high time-resolution at the Observatoire de Haute-Provence with the ELODIE spectrograph were used to obtain the component spectra by applying a Fourier transform spectral disentangling technique. Comparing these with synthetic spectra, the stellar fundamental parameters (effective temperature, surface gravity, projected rotation velocity and chemical composition) are derived. The inner binary consists of two Am components, at least one of which is not yet rotating synchronously at the orbital period though the orbit is a circular one. The distant third component is confirmed to be a δ Scuti star with normal chemical composition.  相似文献   

8.
We present well-sampled uvby light curves, supplemented by a few β filter measurements, of the Algol binary VV UMa. The light curves are analysed using two different codes to derive the orbital and absolute stellar parameters of this binary. We find reasonably good fits to the light curves and determine the stellar effective temperatures T eff,1≃9000–9600 K , and T eff,2≃5300–5600 K with a mass ratio q ≃0.35 . From the light-curve fits we discard the possibility of an anomalous gravity-darkening exponent for the secondary star of this system, as previously suggested.
We find evidence of short-term, small-amplitude variations in the brightness of the system. Two periodicities of about 1.10 and 0.51 h seem to be present in the data for at least two different nights, even within the secondary eclipse. This suggests that VV UMa may be a new Algol binary with a low-amplitude variable primary star, but new data collected during longer observing runs are necessary to confirm the pulsating nature of the brightness variations.  相似文献   

9.
The correlation between stellar activity, as measured by the indicator Δ R HK, and the Rossby number Ro in late-type stars is revisited in light of recent developments in solar dynamo theory. Different stellar interior models, based on both mixing-length theory and the full spectrum of turbulence, are used in order to see to what extent the correlation of activity with Rossby number is model dependent, or otherwise can be considered universal. Although we find some modest model dependence, we find that the correlation of activity with Rossby number is significantly better than with rotation period alone for all the models we consider. Dynamo theory suggests that activity should scale with the dynamo number. A current model of the solar dynamo, the so-called interface dynamo, proposes that the amplification of the toroidal magnetic field by differential rotation (the ω -effect) and the production of the poloidal magnetic field from toroidal by helical turbulence (the α -effect) take place in different, adjacent layers near the base of the convection zone. A new scale analysis based on the interface dynamo shows that the appropriate dynamo number does not depend on the Rossby number alone, but also depends on an additional dimensionless factor related to the differential rotation. This leads to a new interpretation of the correlation between activity and Rossby number, which in turn leads to some conclusions about the magnitude of differential rotation in the dynamo layers of late-type main-sequence stars.  相似文献   

10.
We present the first light curves of V505 Sgr in the infrared (IR) J and K bands. The light curves are analysed with a code based on Roche geometry and stellar model atmosphere fluxes in order to determine a new set of stellar and orbital parameters. From the visual–IR photometry we find no evidence of IR excess in the system. We study the effect of the non-synchronous rotation of the primary star in the light and radial velocity curves. The distance of the system is estimated as  112 ± 4 pc  , in close agreement with the Hipparcos parallax.  相似文献   

11.
We re-investigate UZ Libræ spectra obtained at KPNO in 1998 and 2000. From the 1998 data we compose 11 consecutive Doppler images using the Ca I-6439, Fe I-6393 and Fe I-6411 lines. Applying the method of average cross-correlation of contiguous Doppler images we find anti-solar differential rotation with a surface shear of α ≈ –0.03. The pilot application of the local correlation tracking technique for the same data qualitatively confirms this result and indicates complex flow pattern on the stellar surface. From the cross-correlation of the two available Doppler images in 2000 we also get anti-solar differential rotation but with a much weaker shear of α ≈ –0.004. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present maximum-entropy reconstructions of the rapidly rotating dwarf single star BD+22°4409 (LO Peg) from observations at the William Herschel Telescope in 1993 August. Since this star is too faint to use the conventional single- or three-line Doppler imaging methods, we make use of the novel method of least-squares deconvolution, which utilizes the large number of photospheric lines in an echelle spectrum to produce a single high signal-to-noise ratio profile.
The star-spot distributions from the image reconstructions show cool features at both high and low latitudes, in contradiction to recent theoretical predictions of the dynamo behaviour in rapidly rotating stars. Cross-correlation of the images from consecutive nights shows a good correlation from the small-scale structures, but no evidence of surface differential rotation. From the cross-correlation of the high-latitude spot we are able to reject the period of 9.22 h of Jeffries et al. in favour of their preferred period of 10.17 h, confirming the result of Robb & Cardinal.  相似文献   

13.
We present two images of intermediate and low axial inclination G dwarfs (AP 149 and AP 193) in the young open cluster α Persei, and compare these with previous images of intermediate and high axial inclination objects in this cluster. All stars show starspots at high latitudes, with one star exhibiting a strong polar spot. Although low-latitude features are found on all stars to some degree, the detection of spots on AP 193 is marginal. The apparent difference in starspot morphology from one object to the next is probably the result of a stellar magnetic cycle, although the exact effect on the starspot distribution throughout a cycle is unknown.
Polar spots are found in many Doppler images of rapidly rotating cool stars. In the past, their existence has been called into question, and it has been suggested that they could be the manifestations of NLTE (e.g. chromospheric filling in of line profiles) effects rather than real photospheric features. We assume the polar spots to be real photospheric features, and conclude that the flat-bottomed nature of the profile shape can be attributed to photospheric polar spots. The degree of truncation of the profile depends not only on spot size and strength, but also on the effective foreshortening of the polar region, a function of axial inclination.
H α is in emission on AP 149 which shows a double peak at most phases. The time-series of the profile shows an s-wave pattern as the position of these peaks changes throughout the rotation cycle. We attribute this to coronal clouds located above the stellar surface in synchronous orbit. A maximum-entropy tomogram is derived revealing four distinct emission regions located near and above the corotation radius.  相似文献   

14.
We model stellar differential rotation based on the mean-field theory of fluid dynamics. DR is mainly driven by Reynolds stress, which is anisotropic and has a non-diffusive component because the Coriolis force affects the convection pattern. Likewise, the convective heat transport is not strictly radial but slightly tilted towards the rotation axis, causing the polar caps to be slightly warmer than the equator. This drives a flow opposite to that caused by differential rotation and so allows the system to avoid the Taylor-Proudman state. Our model reproduces the rotation pattern in the solar convection zone and allows predictions for other stars with outer convection zones. The surface shear turns out to depend mainly on the spectral type and only weakly on the rotation rate. We present results for stars of spectral type F which show signs of very strong differential rotation in some cases. Stars just below the mass limit for outer convection zones have shallow convection zones with short convective turnover times. We find solar-type rotation and meridional flow patterns at much shorter rotation periods and horizontal shear much larger than on the solar surface, in agreement with recent observations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars.
We reconstruct the large-scale magnetic geometry of the targets as a low-order  (ℓ < 10)  spherical harmonic expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (i) The magnetic energy of the large-scale field increases with rotation rate. The increase in chromospheric emission with the mean magnetic field is flatter than observed in the Sun. Since the chromospheric flux is also sensitive to magnetic elements smaller than those contributing to the polarimetric signal, this observation suggests that a larger fraction of the surface magnetic energy is stored in large scales as rotation increases. (ii) Whereas the magnetic field is mostly poloidal for low rotation rates, more rapid rotators host a large-scale toroidal component in their surface field. From our observations, we infer that a rotation period lower than ≈12 d is necessary for the toroidal magnetic energy to dominate over the poloidal component.  相似文献   

16.
We present a model of a freely precessing neutron star, which is then compared against pulsar observations. The aim is to draw conclusions regarding the structure of the star, and to test theoretical ideas of crust–core coupling and superfluidity. We argue that, on theoretical grounds, it is likely that the core neutron superfluid does not participate in the free precession of the crust. We apply our model to the handful of proposed observations of free precession that have appeared in the literature. Assuming crust-only precession, we find that all but one of the observations are consistent with there being no pinned crustal superfluid at all; the maximum amount of pinned superfluid consistent with the observations is about 10−10 of the total stellar moment of inertia. However, the observations do not rule out the possibility that the crust and neutron superfluid core precess as a single unit. In this case the maximum amount of pinned superfluid consistent with the observations is about 10−8 of the total stellar moment of inertia. Both of these values are many orders of magnitude less than the 10−2 value predicted by many theories of pulsar glitches. We conclude that superfluid pinning, at least as it affects free precession, needs to be reconsidered.  相似文献   

17.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary-to-primary stellar mass ratio should be  0.003 ≲ ( M 2/ M 1) ≲ 0.15  . A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low-flash luminosity. A too low-mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can, however, produce a quite luminous but short flash when colliding with a low-mass main-sequence star.
Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis-type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to  ∼106 L  followed by a slow decline at very low effective temperatures.  相似文献   

18.
19.
We study the evolution of the circumstellar medium of massive stars. We pay particular attention to Wolf-Rayet stars that are thought to be the progenitors of some long gamma-ray bursts (GRBs). We detail the mass-loss rates we use in our stellar evolution models and how we estimate the stellar wind speeds during different phases. With these details we simulate the interactions between the wind and the interstellar medium to predict the circumstellar environment around the stars at the time of core-collapse. We then investigate how the structure of the environment might affect the GRB afterglow. We find that when the afterglow jet encounters the free-wind/stalled-wind interface, rebrightening occurs and a bump is seen in the afterglow light curve. However, our predicted positions of this interface are too distant from the site of the GRB to reach while the afterglow remains observable. The values of the final wind density,   A *  , from our stellar models are of the same order (≲1) as some of the values inferred from observed afterglow light curves. We do not reproduce the lowest   A *  values below 0.5 inferred from afterglow observations. For these cases, we suggest that the progenitors could have been a WO-type Wolf–Rayet (WR) star or a very low-metallicity star. Finally, we turn our attention to the matter of stellar wind material producing absorption lines in the afterglow spectra. We discuss the observational signatures of two WR stellar types, WC and WO, in the afterglow light curve and spectra. We also indicate how it may be possible to constrain the initial mass and metallicity of a GRB progenitor by using the inferred wind density and wind velocity.  相似文献   

20.
The long-term monitoring and high photometric precision of the Kepler satellite will provide a unique opportunity to sound the stellar cycles of many solar-type stars using asteroseismology. This can be achieved by studying periodic changes in the amplitudes and frequencies of the oscillation modes observed in these stars. By comparing these measurements with conventional ground-based chromospheric activity indices, we can improve our understanding of the relationship between chromospheric changes and those taking place deep in the interior throughout the stellar activity cycle. In addition, asteroseismic measurements of the convection zone depth and differential rotation may help us determine whether stellar cycles are driven at the top or at the base of the convection zone. In this paper, we analyse the precision that will be possible using Kepler to measure stellar cycles, convection zone depths and differential rotation. Based on this analysis, we describe a strategy for selecting specific targets to be observed by the Kepler Asteroseismic Investigation for the full length of the mission, to optimize their suitability for probing stellar cycles in a wide variety of solar-type stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号