首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The plethora of recent cosmologically relevant data has indicated that our Universe is very well fitted by a standard Friedmann–Lemaître–Robertson–Walker (FLRW) model, with     and  ΩΛ≈ 0.73  – or, more generally, by nearly flat FLRW models with parameters close to these values. Additional independent cosmological information, particularly the maximum of the angular-diameter (observer area) distance and the redshift at which it occurs, would improve and confirm these results, once sufficient precise Type Ia supernovae data in the range  1.5 < z < 1.8  become available. We obtain characteristic FLRW-closed functional forms for   C = C ( z )  and     , the angular-diameter distance and the density per source counted, respectively, when  Λ≠ 0  , analogous to those we have for  Λ= 0  . More importantly, we verify that for flat FLRW models z max– as is already known but rarely recognized – the redshift of C max, the maximum of the angular-diameter distance, uniquely gives  ΩΛ  , the amount of vacuum energy in the universe, independent of H 0, the Hubble parameter. For non-flat models, determination of both z max and C max gives both  ΩΛ  and ΩM, the amount of matter in the universe, as long as we know H 0 independently. Finally, determination of C max automatically gives a very simple observational criterion for whether or not the universe is flat – presuming that it is FLRW.  相似文献   

2.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

3.
A key prediction of cosmological theories for the origin and evolution of structure in the Universe is the existence of a 'Doppler peak' in the angular power spectrum of cosmic microwave background (CMB) fluctuations. We present new results from a study of recent CMB observations which provide the first strong evidence for the existence of a 'Doppler peak' localized in both angular scale and amplitude. This first estimate of the angular position of the peak is used to place a new direct limit on the curvature of the Universe, corresponding to a density of Ω = 0.7+0.8−0.5, consistent with a flat universe. Very low-density 'open' universe models are inconsistent with this limit unless there is a significant contribution from a cosmological constant. For a flat standard cold dark matter dominated universe we use our results in conjunction with big bang nucleosynthesis constraints to determine the value of the Hubble constant as H 0 = 30 − 70 km s−1 Mpc−1 for baryon fractions Ωb = 0.05 to 0.2. For H 0 = 50 km s−1 Mpc−1 we find the primordial spectral index of the fluctuations to be n  = 1.1 ± 0.1, in close agreement with the inflationary prediction of n  ≃ 1.0.  相似文献   

4.
In this paper, I investigate the family of mixed three-point correlation functions  〈τ q γ3− q 〉, q = 0, 1, 2  , between the integrated Sachs–Wolfe (iSW) temperature perturbation τ and the galaxy overdensity γ as a tool for detecting the gravitational interaction of cosmic microwave background (CMB) photons with the potentials of non-linearly evolving cosmological structures. Both the iSW-effect and the galaxy overdensity are derived in hyperextended perturbation theory to second order and I emphasize the different parameter sensitivities of the linear and non-linear iSW-effect. I examine the configuration dependence of the relevant bispectra, quantify their sensitivities and discuss their degeneracies with respect to the cosmological parameters  Ωm, σ8, h   and the dark energy equation of state parameter w . I give detection significances for combining Planck CMB data and galaxy sample of a survey like Dark UNiverse Explorer (DUNE) by using a quadratic approximation for the likelihood with Λ cold dark matter (ΛCDM) as the fiducial cosmology: the combination of Planck with DUNE should be able to reach a cumulative signal-to-noise ratio of ≃0.6 for the bispectrum  〈τγ2〉  up to ℓ= 2000, which is too weak to be detected. The most important noise source is the primary CMB fluctuations as the Poisson noise in the galaxy number density is almost negligible for a survey like DUNE.  相似文献   

5.
We have investigated the redshift-space distortions in the optically selected Durham/UKST Galaxy Redshift Survey using the two-point galaxy correlation function perpendicular and parallel to the observer's line of sight, ξ(σ, π). On small, non-linear scales we observe an elongation of the constant ξ(σ, π) contours in the line-of-sight direction. This is a result of the galaxy velocity dispersion and is the common 'Finger of God' effect seen in redshift surveys. Our result for the one-dimensional pairwise rms velocity dispersion is 〈 w 21/2=416±36 km s−1, which is consistent with those from recent redshift surveys and canonical values, but inconsistent with SCDM or LCDM models. On larger, linear scales we observe a compression of the ξ(σ, π) contours in the line-of-sight direction. This is caused by the infall of galaxies into overdense regions, and the Durham/UKST data favours a value of (Ω0.6/ b )∼0.5, where Ω is the mean mass density of the Universe and b is the linear bias factor that relates the galaxy and mass distributions. Comparison with other optical estimates yields consistent results, with the conclusion that the data do not favour an unbiased critical-density universe.  相似文献   

6.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

7.
Large-scale polarization of the cosmic microwave background measured by the WMAP satellite requires a mean optical depth to Thomson scattering,  τe∼ 0.17  . The reionization of the Universe must therefore have begun at relatively high redshift. We have studied the reionization process using supercomputer simulations of a large and representative region of a universe which has cosmological parameters consistent with the WMAP results (  Ωm= 0.3, ΩΛ= 0.7, h = 0.7, Ωb= 0.04, n = 1  and  σ8= 0.9  ). Our simulations follow both the radiative transfer of ionizing photons and the formation and evolution of the galaxy population which produces them. A previously published model with ionizing photon production as expected for zero-metallicity stars distributed according to a standard stellar initial mass function (IMF) (1061 photons per unit solar mass of formed stars) and with a moderate photon escape fraction from galaxies (5 per cent), produces  τe= 0.104  , which is within 1.0 to  1.5σ  of the 'best' WMAP value. Values of up to 0.16 can be produced by taking larger escape fractions or a top-heavy IMF. The data do not require a separate populations of 'miniquasars' or of stars forming in objects with total masses below  109 M  . Reconciling such early reionization with the observed Gunn–Peterson troughs in   z > 6  quasars may be challenging. Possible resolutions of this problem are discussed.  相似文献   

8.
This work investigates the use of a well-known empirical correlation between the velocity dispersion, metallicity and luminosity in Hβ of nearby H  ii galaxies to measure the distances to H  ii -like starburst galaxies at high redshifts. This correlation is applied to a sample of 15 starburst galaxies with redshifts between   z = 2.17  and   z = 3.39  to constrain  Ωm  , using data available from the literature. A best-fitting value of  Ωm= 0.21+0.30−0.12  in a Λ-dominated universe and of  Ωm= 0.11+0.37−0.19  in an open universe is obtained. A detailed analysis of systematic errors, their causes and their effects on the values derived for the distance moduli and  Ωm  is carried out. A discussion of how future work will improve constraints on  Ωm  by reducing the errors is also presented.  相似文献   

9.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   

10.
We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6–3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation,  τ∝ (1 +δ)α  . The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe),  σ8= (0.92 ± 0.09) × (Ωm/0.3)−0.3  , with α varying in the range of 1.56–1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature–density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of He  ii occurred at   z ∼ 3.2  . A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.  相似文献   

11.
The alignment of clusters of galaxies with their nearest neighbours and between clusters within a supercluster is investigated using simulations of 5123 dark matter particles for ΛCDM and τ CDM cosmological models. Strongly significant alignments are found for separations of up to 15  h −1 Mpc in both cosmologies, but for the ΛCDM model the alignments extend up to separations of 30  h −1 Mpc. The effect is strongest for nearest neighbours, but is not significant enough to be useful as an observational discriminant between cosmologies. As a check of whether this difference in alignments is present in other cosmologies, smaller simulations with 2563 particles are investigated for four different cosmological models. Because of poor number statistics, only the standard CDM model shows indications of having different alignments from the other models.  相似文献   

12.
We determine cosmological and evolutionary parameters from the 3CR K -band Hubble diagram and K -band number counts, assuming that the galaxies in question undergo pure luminosity evolution. Separately the two data sets are highly degenerate with respect to choice of cosmological and evolutionary parameters, but in combination the degeneracy is resolved. Of models that either are flat or have  ΩΛ=0  , the preferred ones are close to the canonical case  Ωcold  matter=1  ,  ΩΛ=0  , with luminosity evolution amounting to 1 mag brighter at   z =1  .  相似文献   

13.
A combined sample of 79 high- and low-redshift Type Ia supernovae (SNe) is used to set constraints on the degree of anisotropy in the Universe out to z ≃1. First, we derive the global most probable values of matter density ΩM, the cosmological constant ΩΛ and the Hubble constant H 0, and find them to be consistent with the published results from the two data sets of Riess et al. and Perlmutter et al. We then examine the Hubble diagram (HD, i.e., the luminosity–redshift relation) in different directions on the sky by utilizing spherical harmonic expansion. In particular, via the analysis of the dipole anisotropy, we divide the sky into the two hemispheres that yield the most discrepant of the three cosmological parameters, and the scatter χ HD2 in each case. The most discrepant values roughly move along the locus −4ΩM+3ΩΛ=1 (cf. Perlmutter et al.), but by no more than Δ≈2.5 along this line. For a perfect Friedmann–Robertson–Walker universe, Monte Carlo realizations that mimic the current set of SNe yield values higher than the measured Δ in ∼1/5 of the cases (for ΩM). We discuss implications for the validity of the Cosmological Principle, and possible calibration problems in the SNe data sets.  相似文献   

14.
We present a comparison between the peculiar velocity fields measured from a recently completed l -band Tully–Fisher survey of field spirals (SFI) and that derived from the IRAS 1.2-Jy redshift survey galaxy distribution. The analysis is based on the expansion of these data in redshift space using smooth orthonormal functions, and is performed using low- and high-resolution expansions, with an effective smoothing scale which increases almost linearly with redshift. The effective smoothing scales at 3000 km s−1 are 1500 and 1000 km s−1 for the low- and high-resolution filters. The agreement between the high- and low-resolution SFI velocity maps is excellent. The general features in the filtered SFI and IRAS velocity fields agree remarkably well within 6000 km s−1. This good agreement between the fields allows us to determine the parameter β = Ω0.6 / b , where Ω is the cosmological density parameter, and b is the linear biasing factor. From a likelihood analysis on the SFI and IRAS modes we find that β = 0.6 ± 0.1, independently of the resolution of the modal expansion. For this value of β, the residual fields for the two filters show no systematic variations within 6000 km s−1. Most remarkable is the lack of any coherent, redshift-dependent dipole flow in the residual field.  相似文献   

15.
We study the geometry and topology of the large-scale structure traced by galaxy clusters in numerical simulations of a box of side 320 h −1 Mpc, and compare them with available data on real clusters. The simulations we use are generated by the Zel'dovich approximation, using the same methods as we have used in the first three papers in this series. We consider the following models to see if there are measurable differences in the topology and geometry of the superclustering they produce: (i) the standard cold dark matter model (SCDM); (ii) a CDM model with Ω0 = 0.2 (OCDM); (iii) a CDM model with a 'tilted' power spectrum having n  = 0.7 (TCDM); (iv) a CDM model with a very low Hubble constant, h  = 0.3 (LOWH); (v) a model with mixed CDM and HDM (CHDM); (vi) a flat low-density CDM model with Ω0 = 0.2 and a non-zero cosmological Λ term (ΛCDM). We analyse these models using a variety of statistical tests based on the analysis of: (i) the Euler–Poincaré characteristic; (ii) percolation properties; (iii) the minimal spanning tree construction. Taking all these tests together we find that the best-fitting model is ΛCDM and, indeed, the others do not appear to be consistent with the data. Our results demonstrate that despite their biased and extremely sparse sampling of the cosmological density field, it is possible to use clusters to probe subtle statistical diagnostics of models, which go far beyond the low-order correlation functions usually applied to study superclustering.  相似文献   

16.
We create mock pencil-beam redshift surveys from very large cosmological N -body simulations of two cold dark matter (CDM) cosmogonies, an Einstein–de Sitter model ( τ CDM) and a flat model with Ω0=0.3 and a cosmological constant (ΛCDM). We use these to assess the significance of the apparent periodicity discovered by Broadhurst et al. Simulation particles are tagged as 'galaxies' so as to reproduce observed present-day correlations. They are then identified along the past light-cones of hypothetical observers to create mock catalogues with the geometry and the distance distribution of the Broadhurst et al. data. We produce 1936 (2625) quasi-independent catalogues from our τ CDM (ΛCDM) simulation. A couple of large clumps in a catalogue can produce a high peak at low wavenumbers in the corresponding one-dimensional power spectrum, without any apparent large-scale periodicity in the original redshift histogram. Although the simulated redshift histograms frequently display regularly spaced clumps, the spacing of these clumps varies between catalogues and there is no 'preferred' period over our many realizations. We find only a 0.72 (0.49) per cent chance that the highest peak in the power spectrum of a τ CDM (ΛCDM) catalogue has a peak-to-noise ratio higher than that in the Broadhurst et al. data. None of the simulated catalogues with such high peaks shows coherently spaced clumps with a significance as high as that of the real data. We conclude that in CDM universes, the regularity on a scale of ∼130  h −1 Mpc observed by Broadhurst et al. has a priori probability well below 10−3.  相似文献   

17.
We investigate the properties of clusters of galaxies in the ΛCDM models with a step-like initial power spectrum. We examine the mass function, the peculiar velocities and the power spectrum of clusters in models with different values of the density parameter Ω0, the normalized Hubble constant h and the spectral parameter p that describes the shape of the initial power spectrum. The results are compared with observations. We also investigate the rms bulk velocity in the models, where the properties of clusters are consistent with the observed data. We find that the power spectrum of clusters is in good agreement with the observed power spectrum of the Abell–ACO clusters if the spectral parameter p is in the range p =0.6–0.8. The power spectrum and the rms peculiar velocity of clusters are consistent with observations only if Ω0<0.4 . The models with Ω0=0.3 are consistent with the observed properties of clusters if h =0.50–0.63. For h =0.65, we find that Ω0=0.20–0.27.  相似文献   

18.
The real-space optical-depth distribution along the line of sight to the QSO Q1422+231 is recovered from two HIRES spectra using a modified version of the inversion method proposed by Nusser & Haehnelt. The first two moments of the truncated optical-depth distribution are used to constrain the density-fluctuation amplitude of the intergalactic medium (IGM) assuming that the IGM is photoionized by a metagalactic UV background and obeys a temperaturedensity relation. The fluctuation amplitude and the power-law index of the relation between gas and neutral hydrogen (H  i ) density are degenerate. The rms of the IGM density at z 3.25 estimated from the first spectrum is with 1.56< <2 for plausible reionization histories. This corresponds to 0.9 2.1 with ( =1.7)=1.44±0.3. The values obtained from the second spectrum are higher by 20 per cent. If the IGM density traces the dark matter (DM) as suggested by numerical simulations we have measured the fluctuation amplitude of the DM density at an effective Jeans scale of a few 100 kpc. For cold dark matter (CDM)-like power spectra the amplitude of dark matter fluctuations on these small scales depends on the cosmological density parameter . For power spectra normalized to reproduce the space density of present-day clusters and with a slope parameter of =0.21 consistent with the observed galaxy power spectrum, the inferred can be expressed as: =0.61( /1.7)1.3( x J/0.62)0.6 for a flat universe, and =0.91( /1.7)1.3( x J/0.62)0.7 for a =0 universe. x J is the effective Jeans scale in (comoving) h 1 Mpc. Based on a suite of detailed mock spectra the 1 error is 25 per cent. The estimates increase with increasing . For the second spectrum we obtain 15 per cent lower values.  相似文献   

19.
We show that spatial correlations in a stochastic large-scale velocity field in an otherwise smooth intergalactic medium (homogeneous comoving density) superposed on the general Hubble flow may cause a 'line-like' structure in QSO spectra similar to the population of unsaturated Lyα forest lines which usually are attributed to individual clouds with 1011 ≲ N H i  5 × 1013 cm−2. Therefore there is no clear observational distinction between a diffuse intergalactic medium and discrete intergalactic clouds. It follows that the H  i density in the diffuse intergalactic medium might be substantially underestimated if it is determined from the observed intensity distribution near the apparent continuum in high-resolution spectra of QSOs. Our tentative estimate implies a diffuse neutral hydrogen opacity τGP ∼ 0.3 at z  ∼ 3 and a current baryon density ΩIGM ≃ 0.08, assuming a Hubble constant H 0 = 70 km s−1 Mpc−1.  相似文献   

20.
The number density of rich galaxy clusters still provides the most robust way of normalizing the power spectrum of dark matter perturbations on scales relevant to large-scale structure. We revisit this constraint in the light of several recent developments: (1) the availability of well-defined samples of local clusters with relatively accurate X-ray temperatures; (2) new theoretical mass functions for dark matter haloes, which provide a good fit to large numerical simulations; (3) more accurate mass–temperature relations from larger catalogues of hydrodynamical simulations; (4) the requirement to consider closed as well as open and flat cosmologies to obtain full multiparameter likelihood constraints for CMB and SNe studies. We present a new sample of clusters drawn from the literature and use this sample to obtain improved results on σ 8, the normalization of the matter power spectrum on scales of 8  h −1 Mpc, as a function of the matter density and cosmological constant in a universe with general curvature. We discuss our differences with previous work, and the remaining major sources of uncertainty. Final results on the normalization, approximately independent of power spectrum shape, can be expressed as constraints on σ at an appropriate cluster normalization scale R Cl. We provide fitting formulas for R Cl and σ ( R Cl) for general cosmologies, as well as for σ 8 as a function of cosmology and shape parameter Γ. For flat models we find approximately σ 8≃(0.495−0.037+0.034M−0.60 for Γ=0.23, where the error bar is dominated by uncertainty in the mass–temperature relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号