首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Summary. The equation governing the polar motion shows that the polar secular drift and the Chandler wobble amplitude are related to each other. In particular, a drift of the mean pole position comes out as a consequence of the maintenance of the Chandler wobble by possible step perturbations of the Earth's inertia tensor.
The minimum excitation functions necessary to explain the Chandler wobble amplitude variations for the period 1901–84 are derived from the Chandler term, with the hypothesis that the excitations follow a uniform random distribution in time. It is shown that they have the statistical properties of the steps of a two-dimensional random walk. These functions are then used to derive, from a statistical simulation, a lower limit of the secular drift which may result from the excitation of the Chandler wobble.
The drift generated by the random walk is of the same order of magnitude as the observed secular drift for the period 1901–84, but their time dependence is different. This indicates that the observed secular drift cannot be explained as the consequence of an excitation of the Chandler wobble by random steps of the Earth's inertia tensor. However, the possible contribution of the Chandler wobble excitation to the polar drift has to be taken into account when other mechanisms, such as lithospheric rebound related to deglaciation, are proposed.  相似文献   

2.
The Passive Influence of the Oceans upon the Rotation of the Earth   总被引:2,自引:0,他引:2  
A general theory is developed which allows the exact numerical computation of the static equilibrium response of a non-rotating spherically symmetric Earth model covered by thin oceans with geometrically irregular coastlines to the action of an imposed static tidal or centrifugal potential. The theory is self-consistent, and takes into account the gravitational self-attraction of the oceans and the elastic-gravitational response of the Earth model to both the applied potential and the equilibrium oceanic tidal load on the surface. The results are used to determine the influence of an equilibrium pole tide on the free period and the associated rotational eigenfunction of the Chandler wobble. If the pole is globally well represented by this equilibrium approximation, its effect is to increase the Chandler wobble period by 27·6 days. It is shown that a fully self-consistent theory of the rotation of an Earth model with oceans predicts that changes in spin and wobble will be coupled, and that the Chandler wobble should, as a result, be accompanied by an associated periodic change in the length of day. The consequences of spin-wobble coupling are explored quantitatively, and found to be slight.  相似文献   

3.
Summary. We give the analytical formulation for calculating the transient displacement of fields produced by earthquakes in a stratified, selfgravitating, incompressible, viscoelastic earth. We have evaluated the potential of viscous creep in the asthenosphere in exciting the Chandler wobble by a four-layer model consisting of an elastic lithosphere, a two-layer Maxwell viscoelastic mantle, and an inviscid core. The seismic source is modelled as an inhomogeneous boundary condition, which involves a jump condition of the displacement fields across the fault in the lithosphere. The response fields are derived from the solution of a two-point boundary value problem, using analytical propagator matrices in the Laplace-transformed domain. Transient flows produced by post-seismic rebound are found to be confined within the asthenosphere for local viscosity values less than 1020P. The viscosity of the mantle below the low-viscosity channel is kept at 1022P. For low-viscosity zones with widths greater than about 100 km and asthenospheric viscosities less than 1018P, we find that viscoelasticity can amplify the perturbations in the moment of inertia by a factor of 4–5 above the elastic contribution within the time span of the wobble period. We have carried out a comparative study on the changes of the inertia tensor from forcings due to surface loading and to faulting. In general the global responses from faulting are found to be much more sensitive to the viscosity structure of the asthenosphere than those produced from surface loading.  相似文献   

4.
summary . The Lagrangian governing the infinitesimal elastic-gravitational oscillations of a completely general earth model with interior fluid—solid boundaries is given. Rayleigh's principle is then used to derive a formula for calculating the first-order perturbations in the eigenfrequencies due to an arbitrary slight perturbation of a spherically symmetric, non-rotating, isotropic starting model. The perturbations considered include rotation, asphericity, elastic anisotropy, and a deviatoric initial stress, as well as a change in the positions of both welded and fluid—solid boundaries.  相似文献   

5.
Wavelet analysis for filtering is used to improve estimation of gravity variations induced by Chandler wobble. This method eliminate noise in superconducting gravimeter (SG) records with bandpass filters derived from Daubechies wavelet. The SG records at four European stations (Brussels, Membach, Strasbourg and Vienna) are analysed in this study. First, the earth tidal constituents are removed from the observed data by using synthetic tides, then the gravity residuals are filtered into a narrow period band of 256–512 d by a wavelet bandpass filter. These data are submitted to three regression analysis methods for estimating the gravimetric factor of the Chandler wobble. After processing by wavelet filtering, SG records can provide amplitude factors δ and phase lags κ of the Chandler wobble with much smaller mean square deviation (MSD) than these provided by former studies. It is mainly because the wavelet method can effectively eliminate instrumental drift and provide smoothed data series for the regression analysis.  相似文献   

6.
Summary. A direct calculation is made of the effect on the Chandler wobble of 1287 earthquakes that occurred during 1977–1983. The hypocentral parameters (location and origin time) and the moment tensor representation of the best point source for each earthquake as determined by the 'centroidmoment tensor' technique were used to calculate the change in the Chandler wobble's excitation function by assuming this change is due solely to the static deformation field generated by that earthquake. The resulting theoretical earthquake excitation function is compared with the 'observed' excitation function that is obtained by deconvolving a Chandler wobble time series derived from LAGEOS polar motion data. Since only 7 years of data are available for analysis it is not possible to resolve the Chandler band and determine whether or not the theoretical earthquake excitation function derived here is coherent and in phase with the 'observed' excitation function in that band. However, since the power spectrum of the earthquake excitation function is about 56 dB less than that of the 'observed' excitation function at frequencies near the Chandler frequency, it is concluded that earthquakes, via their static deformation field, have had a negligible influence on the Chandler wobble during 1977–1983. However, fault creep or any type of aseismic slip that occurs on a time-scale much less than the period of the Chandler wobble could have an important (and still unmodelled) effect on the Chandler wobble.  相似文献   

7.
Observations and origin of Rayleigh-wave amplitude anomalies   总被引:1,自引:0,他引:1  
This is a report of observations of amplitude anomalies of fundamental-mode Rayleigh waves ( R 1) between periods of 17 and 100  s. The anomalies are with respect to amplitudes predicted by Rayleigh-wave excitation for a reference earth model and catalogued centroid earthquake source parameters, such as are used in large-scale waveform inversions. The observations indicate that the amplitude anomalies are consistent for nearby recordings of the same event, while there is no obvious relation between the observed anomalies and the paths travelled by the waves. This is in contrast to Rayleigh-wave phase anomalies, which are consistent for similar propagation paths, and hence form the input in many inversions for along-path structure. The observations in this paper show that a similar inversion of intermediate-period amplitude anomalies for along- and near-path structure is not warranted without eliminating source effects, since the amplitude anomalies are dominated by scattering off near-source earth structure and by possible uncertainties in the source parameters. Sensitivity kernels that take the coupling between the moment tensor and displacement field into account demonstrate that Rayleigh-wave amplitude sensitivity is largest near the source. This report argues that the interaction between source-radiated Rayleigh waves and near-source earth structure may not be ignored in amplitude inversion procedures.  相似文献   

8.
Summary. The basic equations describing the dynamical effects of the Earth's fluid core (Liouville, Navier-Stokes and elasticity equations) are derived for an ellipsoidal earth model without axial symmetry but with an homogeneous and deformable fluid core and elastic mantle.
We develop the balance of moment of momentum up to the second order and use Love numbers to describe the inertia tensor's variations. The inertial torque takes into account the ellipticity and the volume change of the liquid core. On the core—mantle boundary we locate dissipative, magnetic and viscous torques. In this way we obtain quite a complete formulation for the Liouville equations.
These equations are restricted in order to obtain the usual Chandler and nearly diurnal eigenfrequencies.
Then we propose a method for calculating the perturbations of these eigenfrequencies when considering additional terms in the Liouville equations.  相似文献   

9.
Summary The linearized equation of motion for the slightly elliptical rotating earth is obtained and using Phinney & Burridge's generalized spherical harmonics, the variational principle is derived for the normal mode oscillations of the Earth. The numerical solutions of two earth models 1066B and B1S6 are searched by minimizing the energy functional for the terrestrial spectral range longer than the lowest order free oscillation. The periods of core modes computed for the earth model B1S6, with stably stratified outer core, ranges from about 4 to 13hr and the periods for the 1066B are much more spread without clustering around the periods of 6 and 12 hr as in B1S6. The results for the earth model 1066B indicate that an outer core can support long-period oscillations even when it is not stably stratified. The Chandler wobble periods obtained are 402.3 day for B1S6 and 402.7 day for 1066B.  相似文献   

10.
The dynamical flattening of the Earth, as observed by geodetic techniques, is different by about 1 per cent from the value associated with the PREM density profile with hydrostatic equilibrium. In this paper, we compute a new dynamical flattening H induced by PREM mean density with hydrostatic equilibrium, to which we add lateral heterogeneities associated with (1) seismic velocity variations observed by tomography and (2) internal boundary topographies. First, we compute mantle circulation associated with the density anomalies derived from a tomography model. The flow-induced boundary deformations are then converted into additional mass anomalies which are added to the tomography model for computing the associated perturbation to the Earth's inertia tensor. Finally, we show that it is possible to obtain a dynamical flattening from the total inertia tensor (i.e. the sum of the PREM inertia tensor and of the perturbation) in agreement with that observed.  相似文献   

11.
We investigate the effect of laterally varying earth structure on centroid moment tensor inversions using fundamental mode mantle waves. Theoretical seismograms are calculated using a full formulation of surface wave ray theory. Calculations are made using a variety of global tomographic earth models. Results are compared with those obtained using the so-called great-circle approximation, which assumes that phase corrections are given in terms of mean phase slowness along the great circle, and which neglects amplitude effects of heterogeneity. Synthetic tests suggest that even source parameters which fit the data very well may have large errors due to incomplete knowledge of lateral heterogeneity. The method is applied to 31 shallow, large earthquakes. For a given earthquake, the focal mechanisms calculated using different earth models and different forward modelling techniques can significantly vary. We provide a range of selected solutions based on the fit to the data, rather than one single solution. Difficulties in constraining the dip-slip components of the seismic moment tensor often produce overestimates of seismic moment, leading to near vertical dip-slip mechanisms. This happens more commonly for earth models not fitting the data well, confirming that more accurate modelling of lateral heterogeneity can help to constrain the dip-slip components of the seismic moment tensor.  相似文献   

12.
Polar motion is modelled for the large 2004 Sumatra earthquake via dislocation theory for an incompressible elastic earth model, where inertia perturbations are due to earthquake-triggered topography of density–contrast interfaces, and for a compressible model, where inertia perturbation due to compression-dilatation of Earth's material is included; density and elastic parameters are based on a multilayered reference Earth. Both models are based on analytical Green's functions, propagated from the centre to the Earth's surface. Preliminary and updated seismological solutions are considered in elucidating the effects of improving earthquake parameters on polar motion. The large Sumatra thrust earthquake was particularly efficient in driving polar motion since it was responsible for large material displacements occurring orthogonally to the strike of the earthquake and to the Earth's surface, as imaged by GRACE gravity anomalies over the earthquake area. The effects of earthquake-induced topography are four times larger than the effects of Earth's compressibility, for l = 2 geopotential components. For varying compressional Earth properties and seismic solution, modelled polar motion ranges from 8.6 to 9.4 cm in amplitude and between 117° and 130° east longitude in direction. The close relationship between polar motion direction, earthquake longitude and thrust nature of the event, are established in terms of basic physical concepts.  相似文献   

13.
A decadal polar motion with an amplitude of approximately 25 milliarcsecs (mas) is observed over the last century, a motion known as the Markowitz wobble. The origin of this motion remains unknown. In this paper, we investigate the possibility that a time-dependent axial misalignment between the density structures of the inner core and mantle can explain this signal. The longitudinal displacement of the inner core density structure leads to a change in the global moment of inertia of the Earth. In addition, as a result of the density misalignment, a gravitational equatorial torque leads to a tilt of the oblate geometric figure of the inner core, causing a further change in the global moment of inertia. To conserve angular momentum, an adjustment of the rotation vector must occur, leading to a polar motion. We develop theoretical expressions for the change in the moment of inertia and the gravitational torque in terms of the angle of longitudinal misalignment and the density structure of the mantle. A model to compute the polar motion in response to time-dependent axial inner core rotations is also presented. We show that the polar motion produced by this mechanism can be polarized about a longitudinal axis and is expected to have decadal periodicities, two general characteristics of the Markowitz wobble. The amplitude of the polar motion depends primarily on the Y 12 spherical harmonic component of mantle density, on the longitudinal misalignment between the inner core and mantle, and on the bulk viscosity of the inner core. We establish constraints on the first two of these quantities from considerations of the axial component of this gravitational torque and from observed changes in length of day. These constraints suggest that the maximum polar motion from this mechanism is smaller than 1 mas, and too small to explain the Markowitz wobble.  相似文献   

14.
Summary. Surface wave behaviour in flat anisotropic structures is first illustrated by performing an exact computation on a simple two-layer model. The variational procedure of Smith & Dahlen is then used to compute the partial derivatives of surface wave phase velocities with respect to the elastic parameters in more realistic earth models. Linear relationships between the partial derivatives for a general anisotropic structure and those for a transversely isotropic structure are derived. When considering waves propagating in a fixed direction, there are only four independent derivatives for Rayleigh waves, and two for Love waves. To avoid the lack of resolution in an inverse method, we propose to use physically constrained models. These results are illustrated by using a model with hexagonal symmetry and a symmetry axis oriented either vertically or horizontally. Quasi-Love- and quasi-Rayleigh-wave partial derivatives are computed for both axis orientations. Modes up to the second overtone and periods ranging between 45 and 130 s have been considered. Finally, anomalies of phase velocity are computed in an oceanic model made of 1/6 oriented olivine crystals with horizontal or vertical preferred orientations of the a -axis.  相似文献   

15.
We present a new method for centroid moment tensor (CMT) inversion, in which we employ the Green's function computed for aspherical earth models using the Direct Solution Method. We apply this method to CMT inversion of low-frequency seismic spectra for the 1994 Bolivia and 1996 Flores Sea deep earthquakes. The estimated centroid locations agree well with those obtained by multiple-shock analyses using body-wave data. This shows that it is possible to obtain reliable CMT solutions by analyses of low-frequency seismic spectra using accurate Green's functions computed for present 3-D earth models.  相似文献   

16.
Summary. A method of synthetic seismogram computation for teleseismic SV -waves is developed in order to treat quantitatively SV -waves in problems of body wave source inversion and source—receiver structure studies. The method employs WKBJ theory for a generalized ray in a vertically inhomogeneous half-space and the propagator matrix technique for waves in near-surface homogeneous layers. Wavenumber integration is done along the real axis of the wavenumber plane and anelasticity is included by using complex velocity in all regions of the earth model. The near-surface source structure is taken into account in the computation for the case of the shallow source by allowing a point source to be located in the homogeneous layers. Source and receiver area structures are also allowed to differ. A general moment tensor point source is considered.  相似文献   

17.
Body tides on an elliptical, rotating, elastic and oceanless earth   总被引:17,自引:0,他引:17  
Summary. The Earth's deformation caused by the luni-solar tidal force is defined as the 'body tide'. We compute the effects of the Earth's rotation and elliptical stratification on the body tide for a number of modern elastic structural models. Rotation and ellipticity within the mantle are found to affect tidal observations by about 1 per cent. A consequence is an improved estimate for the fluid core resonance in the diurnal tidal band. Agreement between results for the different structural models is very good. As a result, the results computed here can be used to model the tidal effects of a globally averaged, oceanless, rotating, elliptical and elastic earth to an accuracy of at least one part in 300.  相似文献   

18.
Summary An extension of the Love-Larmor theory to a low-loss unelastic earth model, leads to the surprisingly simple approximation
   
where τs= 447.4 sidereal day is the static wobble period, τR= 306 sidereal day is the rigid-earth wobble period and τw= 433 sidereal day is the observed Chandler period. Q W, Q μ are the respective average Q values of the wobble and the Earth's mantle at τW. The known numerical factor F is only slightly dependent on the Earth structure.  相似文献   

19.
Summary. Exact spectra of a normal mode multiplet nSl or n Tl on a non-rotating ellipsoidal earth are composed of l + 1 lines. Asymptotically, in the limit of large l , such spectra appear, however, as a single line or peak broadened by attenuation alone. The location within the multiplet of this single peak depends only upon the angle of inclination of the source-receiver great circle path to the axis of ellipsoidal symmetry. The appearance of a single peak is produced by the cancellation of nearby singlets. To assess the utility of the single peak approximation, exact and asymptotic synthetic spectra have been compared directly for a number of multiplets and for a variety of source-receiver configurations. Except in the immediate vicinity of the source and its antipode, the approximation appears to be satisfactory on an ellipsoidal earth down to about l ∼ 10. Additional studies will be required to determine the limits of validity on a laterally heterogeneous earth.  相似文献   

20.
The observed time-series of precession/nutation show residuals with respect to an empirical model based on the rigid Earth theoretical nutations and a frequency dependent transfer function with resonances to the Earth's normal modes. These residuals display energy mainly in the frequency domain around 430 and 500 days in the inertial frame. In this frequency band, the energy is possibly related to two normalmode frequencies: the free core nutation (FCN) and the free inner core nutation (FICN). In this paper, we examine the possibility of obtaining this energy from the resonance effect induced by a luni-solar (or planetary) forcing, or by an atmospheric forcing at a frequency very close to these Earth free nutations. The amplification factor due to the resonance is computed from an analytical formula expressed in the case of a simplified three-layer ellipsoidal rotating earth (with an elastic inner core, a liquid outer core and an elastic mantle), as well as the empirical formula based on the analysis of VLBI observations. For the tidal forcing, the theoretical results do not show any resonance at the level of precision we have examined but it is still possible to find one frequency near the FCN or FICN frequencies which could be excited. In contrast, for the atmospheric pressure the level of energy needed could be obtained from the diurnal pressure, depending on the noise level of the Earth's global pressure. We also show that the combination of three waves can explain the observed decrease of energy with time. While the tidal potential amplitudes are too small, a pressure noise level of 0.5 Pa would be sufficient to excite these waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号