首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dicopia antirrhinum C. Monniot, 1972 is a rare species of deep-sea ascidian belonging to the Family Octacnemidae, reported at depths of 1000–2500 m in European Atlantic waters. Adult individuals have never been reported before in the Mediterranean Sea, where only seven juvenile specimens were found in 1975 at 500 m water depth in the Central basin (Malta). The affinities of these specimens with D. antirrhinum were noted, but lack of some typical characters of the species in juveniles prevented a definite taxonomical identification. No other member of the Octacnemidae has ever been found in the Mediterranean. In this study we describe the sampling of an adult specimen of D. antirrhinum at around 1100 m water depth on the flank of the La Fonera (Palamós) canyon, Northwestern Mediterranean, confirming their presence in the Mediterranean Sea. We also observed 5 individuals of this species on their natural habitat with a Remotely Operated Vehicle (ROV). Our results highlight the potential occurrence of Octacnemidae, the presence of which has been largely overlooked, in several deep-sea canyon areas within the Western Mediterranean basin. These observations are important because they indicate the need for increased sampling effort with new technologies, such as ROVs, in ecologically relevant habitats such as canyons, in order to obtain a more accurate picture of deep-sea biodiversity in the Mediterranean Sea.  相似文献   

2.
The ventilation of the permanent thermocline in the ocean margin of the mid-latitude eastern North Atlantic Ocean was studied by analysis of a historic data set of over 2200 hydrographic stations. This data set contains physical (pressure, temperature, salinity) and bio-geochemical (dissolved oxygen, silica, nitrate and phosphate) parameters. The large-scale structure of the Eastern North Atlantic Central Water in the permanent thermocline is presented. Conservative tracer distributions are described as are those of the non-conservative tracers like apparent oxygen utilization and dissolved nutrients. The hydrographic structure agrees with ventilation of the thermocline by southward subducted Mode Water from the eastern North Atlantic. Estimates of the oxygen diapycnal diffusion term and the distribution of pre-formed nutrients indicate that diapycnal mixing is not important for the large-scale distribution of bio-geochemical tracers in the thermocline. Only along the west Iberian continental slope may enhanced boundary mixing have some local influence on these tracer distributions. From the observed meridional ageing trend a characteristic southward velocity of −1 cm/s and a total subduction of 4.5 Sv between 32 and 52°N east of 20°W are estimated.  相似文献   

3.
Seafloor mapping of the central Lomonosov Ridge using a multibeam echo-sounder during the Beringia/Healy–Oden Trans-Arctic Expedition (HOTRAX) 2005 shows that a channel across the ridge has a substantially shallower sill depth than the ∼2500 m indicated in present bathymetric maps. The multibeam survey along the ridge crest shows a maximum sill depth of about 1870 m. A previously hypothesized exchange of deep water from the Amundsen Basin to the Makarov Basin in this area is not confirmed. On the contrary, evidence of a deep-water flow from the Makarov to the Amundsen Basin was observed, indicating the existence of a new pathway for Canadian Basin Deep Water toward the Atlantic Ocean. Sediment data show extensive current activity along the ridge crest and along the rim of a local Intra Basin within the ridge structure.  相似文献   

4.
We describe the quantitative and compositional (phytopigment, protein, carbohydrate and lipid) patterns of sedimentary organic matter along bathymetric gradients in seven submarine canyons and adjacent open slopes located at four European regions: one along the NE Atlantic and three along the Mediterranean continental margins. The investigated areas are distributed along a putative longitudinal gradient of decreasing primary production from the Portuguese (northeastern Atlantic Ocean), to the Catalan (western Mediterranean Sea), Southern Adriatic (central Mediterranean Sea) and Southern Cretan (eastern Mediterranean Sea) margins. Sediment concentrations of organic matter differed significantly between the Portuguese margin and the Mediterranean regions and also from one study area to the other within the Mediterranean Sea. Differences in quantity and composition of sediment organic matter between canyons and open slopes were limited and significant only in the eutrophic Portuguese margin, where the differences were as large as those observed between regions (i.e. at the mesoscale). These results suggest that the overall trophic status of deep margin sediments is controlled mostly by the primary productivity of the overlying waters rather than by the local topography. Moreover, we also report that the quantity and nutritional quality of sediment organic matter in canyons and adjacent open slopes do not show any consistent depth-related pattern. Only the Nazaré and Cascais canyons in the Portuguese margin, at depths deeper than 500 m, displayed a significant accumulation of labile organic matter. The results of our study underline the need of further investigations of deep margins through sampling strategies accounting for adequate temporal and spatial scales of variability.  相似文献   

5.
Studies carried out in four submarine canyons in the northwestern Mediterranean Sea have resulted in the discovery of a new fauna composed chiefly of hydromedusae. This finding has led us to postulate the existence of a singular planktonic community in these canyons that is probably maintained by the flux and deposit of organic material from the continental shelf. The specific composition and abundance of the populations differ from canyon to canyon and seem to be related to vertical fluxes, topography, and both the hydrographic and ecological features of each canyon. This hydromedusan fauna is characterized by meroplanktonic species that appear to live out their entire life cycles inside the canyons. Those cycles seem to be linked to seasonal production processes related to factors such as canyon topography, sedimentation, and circulation of water masses within the canyons. The present study indicates that submarine canyons could be a new key habitat to an understanding of the biodiversity of coastal and shelf zones. The origin of the deep-water Mediterranean fauna is reviewed, and the hypothesis of a Tethys origin for some of the deep-water hydromedusae endemic to the Mediterranean is entertained.  相似文献   

6.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

7.
The LOMROG 2007 expedition targeted the previously unexplored southern part of the Lomonosov Ridge north of Greenland together with a section from the Morris Jesup Rise to Gakkel Ridge. The oceanographic data show that Canadian Basin Deep Water (CBDW) passes the Lomonosov Ridge in the area of the Intra Basin close to the North Pole and then continues along the ridge towards Greenland and further along its northernmost continental slope. The CBDW is clearly evident as a salinity maximum and oxygen minimum at a depth of about 2000 m. The cross-slope sections at the Amundsen Basin side of the Lomonosov Ridge and further south at the Morris Jesup Rise show a sharp frontal structure higher up in the water column between Makarov Basin water and Amundsen Basin water. The frontal structure continues upward into the Atlantic Water up to a depth of about 300 m. The observed water mass division at levels well above the ridge crest indicates a strong topographic steering of the flow and that different water masses tend to pass the ridge guided by ridge-crossing isobaths at local topographic heights and depressions. A rough scaling analysis shows that the extremely steep and sharply turning bathymetry of the Morris Jesup Rise may force the boundary current to separate and generate deep eddies.  相似文献   

8.
Very large subaqueous sand dunes were discovered on the upper continental slope of the northern South China Sea. The dunes were observed along a single 40 km long transect southeast of 21.93°N, 117.53°E on the upper continental slope in water depths of 160 m to 600 m. The sand dunes are composed of fine to medium sand, with amplitudes exceeding 16 m and crest-to-crest wavelengths exceeding 350 m. The dunes' apparent formation mechanism is the world's largest observed internal solitary waves which generate from tidal forcing on the Luzon Ridge on the east side of the South China Sea, propagate west across the deep basin with amplitudes regularly exceeding 100 m, and dissipate extremely large amounts of energy via turbulent interaction with the continental slope, suspending and redistributing the bottom sediment. While subaqueous dunes are found in many locations throughout the world's oceans and coastal zones, these particular dunes appear to be unique for two principal reasons: their location on the upper continental slope (away from the influence of shallow-water tidal forcing, deep basin bottom currents and topographically-amplified canyon flows), and their distinctive formation mechanism (approximately 60 episodic, extremely energetic, large amplitude events each lunar cycle).  相似文献   

9.
10.
High-resolution multi-channel seismic records from the eastern margin of the Iceland Basin, Northeast Atlantic, are used to infer regional patterns of bottom water dynamics from seafloor morphology and distribution of the most recent geological units deposited along the margin. This information is combined with results from oceanographic and hydrodynamic measurements made in the area. The study area is located between Lousy Bank and Hatton Bank, where deep-water currents are forced around structural highs, leaving a complex pattern of topographically controlled sediment transport pathways. At the top and upper flank of Lousy Bank, George Bligh Bank and Hatton Bank topographic forcing leads to considerable acceleration of the northward flowing North Atlantic Current. At greater water depth, seismic facies indicative of bottom current action are found to be widespread. In addition, seafloor morphology displays moat features extending over large distances. The occurrence of these moats is confined to specific water depths in the range from 700–1400 m and from 1800 to 2200 m depth range. These depth ranges correspond to the basal depth stratum of the North Atlantic Current and the depth range of the Deep Northern Boundary Current, respectively. Geological evidence suggests maximum near-bottom current speed of about 0.5 m/s for these moat areas. Using oceanographic data we suggest that formation of the moats is not likely to be associated with the presence of a persistent high-speed contour current core, but probably originates from the occurrence of solibores and thus may be related to the internal wave field of the Iceland Basin possible linked to atmospheric pressure variation.  相似文献   

11.
Year-long Lagrangian trajectories within the Labrador Sea Water of the eastern North Atlantic Ocean are analysed for basic flow statistics. Root-mean-square velocities at 1750 m depth are about 2 cm/s, except within the North Atlantic Current, where they are twice as large. These values are consistent with previous Eulerian measurements and extend those results to a much larger domain of the eastern basin. Mean flow estimates in boxes large enough to contain about 1 float-year of data indicate that Labrador Sea Water, having crossed the Mid- Atlantic Ridge (not resolved) near 50–55°N, presumably with the North Atlantic Current, partially recirculates to the north in the subpolar gyre, as well as entering the subtropical gyre and continuing south and west. The circulation of this water mass, as defined by the 1 yr average velocities, is stronger than traditional models of deep circulation would suggest, with an interior flow of roughly 1 cm/s. Mean speeds up to 3 cm/s were observed, with the highest values near the Azores Plateau. North of 45°N–55°N, mean eastward speeds closer to 0.2 cm/s were observed. Wind-generated barotropic fluctuations may be responsible for some part of the transport at this depth.  相似文献   

12.
Despite the increasing attention to assemblages of deep-water corals in the past decade, much of this research has been focused on documenting and enumerating associated fauna. However, an understanding of the distribution of most species of coral and the ecological processes associated with these assemblages is still lacking. In this study, we qualitatively and quantitatively described the habitats of two families of deep-water corals in relation to six oceanographic factors (depth, slope, temperature, current, chlorophyll a concentration and substrate) on the Pacific and Atlantic Continental Margins of North America (PCM and ACM study areas, respectively). This study focused primarily on the distributions of Primnoidae and Paragorgiidae because of the large number of documented occurrences. For each environmental factor, deep-water coral locations were compared to the surrounding environment using χ2 tests. On both continental margins, coral locations were found to be not randomly distributed within the study areas, but were within specific ranges for most environmental factors. In the PCM study area, Paragorgiidae and Primnoidae locations were found in areas with slopes ranging from 0° to 10.0°, temperature from −2.0 to 11.0 °C and currents from 0 to 143 cm s−1. In the ACM study area, Paragorgiidae and Primnoidae locations were found in areas with slopes ranging from 0° to 1.4°, temperature ranging from 0 to 11.0 °C and currents ranging from 0 to 207 cm s−1. Although the patterns in habitat characteristics were similar, differences existed between families with respect to particular environmental factors. In both study areas, most environmental parameters in locations where corals occurred were significantly different from the average values of these parameters as determined with χ2 tests (p<0.05) except for substrate in Paragorgiidae locations and depth in Primnoidae locations on the PCM. This is the first study to show coral distributional patterns at the continental shelf/slope scale.  相似文献   

13.
Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.  相似文献   

14.
Deep slope currents and particulate matter concentrations were studied on the Barcelona continental margin in and around the Foix submarine canyon from May 1993 to April 1994. This year-long moored experiment revealed that near-bottom slope currents are strongly influenced by the bottom topography, being oriented along isobaths and along the canyon axis. The deep slope current fluctuations are controlled by the local inertial motion (18.3 h) and also by low-frequency oscillations at periods of 6–10 days, related to the passage of atmospheric pressure cells. Particulate matter concentrations recorded during the experiment do not show a clear seasonal variability, except outside the canyon, where significant peaks of particulate matter concentrations were recorded only during the winter-fall deployment. In addition, the temporal evolution of suspended particulate matter concentration is not linked to changes in the cross-slope or along-slope current components and did not show a clear relationship with river avenues or wave storm events. This suggests that suspended particulate matter exported from the shelf is dispersed on the slope by advective processes, which attenuate the signal of the shelf-slope sediment transfer. Mean particulate matter concentrations differed among sampling sites, but the magnitude of the mean horizontal suspended particle flux reflects a quite similar value in the whole study area, ranging from 2.53 to 4.05 mg m−2 s−1. These horizontal suspended particle fluxes are 27 (canyon head) to 360 (open slope) times higher than the settling particle fluxes measured at the same sampling sites, indicating that the suspended particulate transport on the Barcelona continental slope dominates over the settling particle fluxes, even inside the Foix submarine canyon.  相似文献   

15.
The Wyville Thomson Ridge forms part of the barrier to the meridional circulation across which cold Nordic Sea and Arctic water must traverse to reach the Atlantic Ocean. Overflow rates across the ridge are variable (but can be dramatic at times), and may provide a subtle indicator of significant change in the circulation in response to climate change. In spring 2003, a series of CTD sections were conducted during a large overflow event in which Norwegian Sea Deep Water (NSDW) cascaded down the southern side of the ridge into the Rockall Trough at a rate of between 1 and 2 Sv. The NSDW was partially mixed with overlying North Atlantic Water (NAW), and comprised about 1/3rd of the cascading water. The components of NAW and NSDW in the overflow were sufficiently large that there must have been a significant divergence of the inflow through the Faroe-Shetland Channel, and of the outflow through the Faroe Bank Channel.As the plume descended, its temperature near the sea bed warmed by over 3 °C in about a day. Although the slope was quite steep (0.03), the mean speed of the current (typically 0.36 m s−1) was too slow for significant entrainment of NAW to occur (the bulk Richardson number was of order 5). However, very large overturns (up to 50 m) were evident in some CTD profiles, and it is demonstrated from Thorpe scale estimates that the warming of the bottom waters was due to mixing within the plume. It is likely that some of the NSDW had mixed with NAW before it crossed the ridge. The overflow was trapped in a gully, which caused it to descend to great depth (1700 m) at a faster rate, and with less modification due to entrainment, than other overflows in the North Atlantic. The water that flowed into the northern part of the Rockall Trough had a temperature profile that ranged from about 3 to 8 °C. Water with a temperature of >6 °C probably escaped into the Iceland Basin, between the banks that line the north-western part of the Trough. Colder water (< 6 °C) must have travelled down the eastern side of the Rockall Bank, and may have had a volume flux of up to 1.5 Sv.  相似文献   

16.
Chlorofluorocarbon (CFC) inventories provide an independent method for calculating the rate of North Atlantic Deep Water (NADW) formation. From data collected between 1986 and 1992, the CFC-11 inventories for the major components of NADW are: 4.2 million moles for Upper Labrador Sea Water (ULSW), 14.7 million moles for Classical Labrador Sea Water (CLSW), 5.0 million moles for Iceland–Scotland Overflow Water (ISOW), and 5.9 million moles for Denmark Strait Overflow Water (DSOW). The inventories directly reflect the input of newly formed water into the deep Atlantic Ocean from the Greenland, Iceland and Norwegian Seas and from the surface of the subpolar North Atlantic during the time of the CFC-11 transient. Since about 90% of CFC-11 in the ocean as of 1990 entered the ocean between 1970 and 1990, the formation rates estimated by this method represent an average over this time period. Formation rates based on best estimates of source water CFC-11 saturations are: 2.2 Sv for ULSW, 7.4 Sv for CLSW, 5.2 Sv for ISOW (2.4 Sv pure ISOW, 1.8 Sv entrained CLSW, and 1.0 Sv entrained northeast Atlantic water) and 2.4 Sv for DSOW. To our knowledge, this is the first calculation for the rate of ULSW formation. The formation rate of CLSW was calculated for an assumed variable formation rate scaled to the thickness of CLSW in the central Labrador Sea with a 10 : 1 ratio of high to low rates. The best estimate of these rates are 12.5 and 1.3 Sv, which average to 7.4 Sv for the 1970–1990 time period. The average formation rate for the sum of CLSW, ISOW and DSOW is 15.0 Sv, which is similar to (within our error) previous estimates (which do not include ULSW) using other techniques. Including ULSW, the total NADW formation rate is about 17.2 Sv. Although ULSW has not been considered as part of the North Atlantic thermohaline circulation in the past, it is clearly an important component that is exported out of the North Atlantic with other NADW components.  相似文献   

17.
Chlorofluoromethanes (CFMs) F-11 and F-12 were measured during August 1991 and November 1992 in the Romanche and Chain Fracture Zones in the equatorial Atlantic. The CFM distributions showed the two familiar signatures of the more recently ventilated North Atlantic Deep Water (NADW) seen in the Deep Western Boundary Current (DWBC). The upper maximum is centered around 1600 m at the level of the Upper North Atlantic Deep water (UNADW) and the deeper maximum around 3800 m at level of the Lower North Atlantic Deep Water (LNADW). These observations suggest a bifurcation at the western boundary, some of the NADW spreading eastward with the LNADW entering the Romanche and the Chain Fracture Zones. The upper core (σ1.5=34.70 kg m-3) was observed eastward as far as 5°W. The deep CFM maximum (σ4=45.87 kg m-3), associated with an oxygen maximum, decreased dramatically at the sills of the Romanche Fracture Zone: east of the sills, the shape of the CFM profiles reflects mixing and deepening of isopycnals. Mean apparent water “ages” computed from the F-11/F-12 ratio are estimated. Near the bottom, no enrichment in CFMs is detected at the entrance of the fracture zones in the cold water mass originating from the Antarctic Bottom Water flow.  相似文献   

18.
A one year study of downward particle fluxes conducted in the northwestern Mediterranean Sea is presented. Two mooring lines equipped with sediment traps and current meters were deployed at around 1000 m depth on the northeastern continental slope of the Gulf of Lions, one inside the Grand-Rhône canyon and the other outside on the adjacent open slope. Mean total mass fluxes increased slightly with trap depth inside the canyon, a feature quite typical of fluxes in continental margin environments. The near-bottom trap inside the canyon collected more material than its counterpart deployed at equivalent depth on the open slope, indicating a preferential transport of material within the canyon. Major biogeochemical constituents (organic and inorganic carbon, opal, and siliciclastic residue) revealed a marked difference in particle composition between the sub-surface (80 m) and deeper traps, suggesting the existence of at least two sources of material. The two shallower traps showed a clear biological signal: flux peaks were related to periods of surface biological production, especially perceptible in summer and autumn. The particulate matter trapped at deeper levels in the canyon and on the open slope was characterized by a more stable composition with a major lithogenic contribution, originating from sedimentary material most probably resuspended on the upper- or mid-slope. The seasonal variability was dominated by the summer/winter alternation; the latter period was characterized by a weak stratification of the water column and an enhanced current variability favoring vertical exchanges. The present results are compared with those obtained previously in the Lacaze-Duthiers canyon on the southwestern side of the Gulf of Lions. The comparison shows strong differences between the NE entrance and the SW exit of the gulf, with respect to the general along-slope circulation of water masses, both in terms of intensity of particulate fluxes and transport processes.  相似文献   

19.
Studies of the Cariaco Basin on the continental shelf of Venezuela, as a part of the Carbon Retention In A Colored Ocean (CARIACO) program, have revealed that the chemistry of the deeper waters of the system is more variable than previously believed. Small oxygen maxima have been observed on a number of occasions at depths where oxygen was previously absent, suggesting the occurrence of intrusions of oxygenated water into the region of the oxic/anoxic interface (250–300 m). Apparently because of these events, the oxic/anoxic interface deepened by about 100 m during the period of our observations. We also observed a dramatic decrease in H2S concentrations at all depths below the oxic/anoxic interface during this same period. Bottom waters, for example, had an H2S concentration of about 75 μM in November 1995, but since November 1997, concentrations in bottom water have not exceeded 55 μM. Water of sufficient density to sink to the bottom of the Basin has been observed on one occasion at sill depth just north of the eastern sill. However, based on a simple box model, the decrease in deep-water sulfide does not appear to be due to intrusion of oxygenated water alone, as concentrations of other measured species, and of hydrographic parameters, have remained constant with time. Instead, we postulate that an earthquake that took place in July 1997 resulted in a turbidity current that transported large quantities of coastal sediment containing oxidized iron into the deep waters of the basin. If the final products of reaction were elemental sulfur and iron sulfide, the sediment associated with the oxidized iron would have produced a turbidite layer about 10 cm thick. Previous earthquakes have produced turbidites of similar thickness.  相似文献   

20.
《Ocean Modelling》2002,4(3-4):221-248
Three-dimensional numerical simulations of the generation and propagation of the semidiurnal internal tide in a submarine canyon with dimensions similar to those of the Monterey Canyon are carried out using a primitive equation model. Forcing with just sea level at the offshore boundary in an initially horizontally homogeneous ocean with realistic vertical stratification, internal tides are generated at the canyon foot and rim, and along portions of the canyon floor. The results compare favorably with observations, both indicating enhancement of energy along the canyon floor propagating at an angle consistent with linear internal wave theory. Due to the earth's rotation, internal tide energy is distributed asymmetrically in the cross-canyon direction, favoring the southern side. The effect of canyon floor slope is explored, with the finding that small changes in the slope result in large changes in the amount and distribution of the internal tide energy. Canyons whose floors are subcritical with respect to the semidiurnal frequency along their entire length have very little baroclinic energy, whereas canyons that are near-critical along much of their length, such as the Monterey Canyon, develop strong internal tides that propagate shoreward. Canyons that are near-critical at their mouths but supercritical further inshore generate the most internal tidal energy overall, although little of it makes it onto the continental shelf shoreward of the canyon head. The effects of internal tides within the canyons can be seen outside the canyons as well. Water is transported from depth onto the adjacent continental shelf along the canyon rims. This tidal pumping can be responsible for alongshore internal tide propagation and tidal-period surface currents with relatively small horizontal scales of variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号