首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mesozooplankton and 63–200 μm net-collected microzooplankton grazing on phytoplankton and protozoans was evaluated by 24-h incubations on a latitudinal transect in the Atlantic Ocean, from 35°N to 38°S (AMT-15; September–October 2004). The sampling area comprised contrasting ecosystems, including upwelling zones and oligotrophic subtropical gyres. Grazing impacts of mesozooplankton and 63–200 μm microzooplankton on total chlorophyll a (Chl a), >5 μm Chl a, ciliates, and dinoflagellates were low for both zooplankton size fractions, always removing<1.5% of the standing stocks of these groups. Grazing had a slightly greater impact upon primary production (up to 10% of primary production consumed daily), although on most occasions grazing removed<1% of primary production per day. To account for the reduction of micrograzers by predators in the experimental bottles and the consequent reduction of grazing pressure, the data were corrected with knowledge on the decrease of microzooplankton during incubations and global estimates of microzooplankton grazing. The corrected grazing rates for mesozooplankton ranged from 4% to 28% of the primary production consumed daily, and from 1% to 2% of the standing stock of Chl a removed every day. The 63–200 μm microzooplankton corrected grazing impact was always<5% of the primary production and standing stock consumed per day. The corrected grazing activity of 63–200 μm microzooplankton and mesozooplankton rendered daily rations ranging from 3% to 38% of the body carbon consumed daily, not sufficient for basal metabolism in most of the areas studied. Finally, the data on mesozooplankton grazing on primary production confirm the recent hypothesis of a decline of the relative importance of mesozooplankton grazing on primary producers with increasing primary production [Calbet, A., 2001. Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography 46, 1824–1830].  相似文献   

2.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

3.
Investigations of primary production (PP) were undertaken in the southern Benguela ecosystem during two research surveys in October 2006 and May 2007. Significant differences in environmental conditions, as well as biomass and PP, were observed between October and May. During October, integrated biomass and PP were significantly higher, ranging from 20.43 to 355.01 mg m−2, and 0.71 to 6.98 g C m−2 d−1, respectively, than in May, where the range was 47.92–141.79 mg m−2, and 0.70–3.35 g C m−2 d−1, respectively. Distribution patterns indicated low biomass and PP in newly upwelled water along the coast, higher biomass and PP in the mid-shelf region, while lower values were observed at and beyond the shelf edge. Latitudinal variations showed consistently higher biomass and PP in the St. Helena Bay region compared to biomass and PP south of Cape Town. During both surveys, phytoplankton communities were comprised primarily of diatoms and small flagellates, with no significant differences. Phytoplankton adaptation to environmental variability was characterised by increased PmB and Ek under elevated temperatures and irradiance, while no clear relationships were evident for αB. Generalised Additive Models (GAMs) showed that photosynthetic parameters were all significant predictors of photosynthesis rates (Pz), with PmB being the most important, accounting for 36.97% of the deviance in Pz. However, biomass levels and environmental conditions exerted a much greater influence on Pz, with irradiance explaining the largest proportion (68.24%) of the deviance. Multiple predictor GAMs revealed that 96.26% of the deviance in Pz could be explained by a model which included nitrate, chlorophyll a, and irradiance.  相似文献   

4.
Rates of nitrogen assimilation by phytoplankton were measured at 13 stations along a transect in the northwestern Indian Ocean, from the Gulf of Oman, southwards to approximately 8°N, during November and December 1994. Nitrate (NO3), ammonium (NH4) and urea assimilation were measured using simulated in situ 15N incubation techniques. These measurements were supported by simultaneous rate measurements of primary production using 14C incubation techniques and detailed vertical distributions of temperature and chlorophyll concentrations. Euphotic zone integrated nitrogen assimilation rates varied between 1.1 and 23.6 mmol N m-2 day-1, with generally higher rates occurring at the northern and southern ends of the transect. At the majority of stations ammonium was the preferred nitrogen substrate assimilated; the average integrated assimilation rate of ammonium being 3.7 mmol N m-2 day-1 compared to 1.6 and 1.8 mmol N m-2 day-1 for urea and nitrate respectively. This general preference is reflected in the low f-ratios, which were ⩽0.52 for all stations and in the relative preference indices (RPI) values which were consistently >1 for ammonium and <1 for nitrate. A further examination of the data has lead to an apparent partitioning of the northwestern Indian Ocean into 2 regions; a region north of 17°30′N and a region south of this, to about 8°N. This division is based on: (i) the relationship between the f-ratio and ambient nitrate levels; (ii) nitrogen assimilation and primary production and (iii) the biomass distribution. It is suggested that this partitioning should be investigated further with the development of biogeochemical provinces in mind and the estimation of f-ratios on much larger, horizontal scales.  相似文献   

5.
Size-fractionated chlorophyll-a and carbon incorporation rates were determined on a series of 13 cruises carried out from 1992 to 2001with the aim of investigating the patterns and causes of variability in phytoplankton chlorophyll and production in the Eastern North Atlantic Subtropical Gyral Province (NASE). Averaged (±SE) integrated chlorophyll-a concentration and primary production rate were 17±1 mg m−2 and 253±22 mg C m−2 d−1. Small-sized cells (<2 μm) formed the bulk of phytoplankton biomass (71%) and accounted for 54% of total primary production. A clear latitudinal gradient in these variables was not detected. By contrast, large seasonal variability was detected in terms of primary production, although integrated phytoplankton biomass, as estimated from chlorophyll-a concentration, remained rather constant and did not display significant changes with time. Variability in primary production (PP) was related mainly to variability in surface temperature and surface chlorophyll-a concentration. The control exerted by surface temperature was related to nutrient availability. By contrary, euphotic-zone depth, depth of maximum concentration of chlorophyll-a and integrated chlorophyll-a did not contribute significantly to the high variability in primary production observed in this oligotrophic region.  相似文献   

6.
Phytoplankton and bacterial abundance, size-fractionated phytoplankton chlorophyll-a (Chl-a) and production together with bacterial production, microbial oxygen production and respiration rates were measured along a transect that crossed the Equatorial Atlantic Ocean (10°N–10°S) in September 2000, as part of the Atlantic Meridional Transect 11 (AMT 11) cruise. From 2°N to 5°S, the equatorial divergence resulted in a shallowing of the pycnocline and the presence of relatively high nitrate (>1 μM) concentrations in surface waters. In contrast, a typical tropical structure (TTS) was found near the ends of the transect. Photic zone integrated 14C primary production ranged from ∼200 mg C m−2 d−1 in the TTS region to ∼1300 mg C m−2 d−1 in the equatorial divergence area. In spite of the relatively high primary production rates measured in the equatorial upwelling region, only a moderate rise in phytoplankton biomass was observed as compared to nearby nutrient-depleted areas (22 vs. 18 mg Chl-a m−2, respectively). Picophytoplankton were the main contributors (>60%) to both Chl-a biomass and primary production throughout the region. The equatorial upwelling did not alter the phytoplankton size structure typically found in the tropical open ocean, which suggests a strong top-down control of primary producers by zooplankton. However, the impact of nutrient supply on net microbial community metabolism, integrated over the euphotic layer, was evidenced by an average net microbial community production within the equatorial divergence (1130 mg C m−2 d−1) three-fold larger than net production measured in the TTS region (370 mg C m−2 d−1). The entire region under study showed net autotrophic community metabolism, since respiration accounted on average for 51% of gross primary production integrated over the euphotic layer.  相似文献   

7.
IronEx I demonstrated a rapid and marked response by grazers to Fe-induced increases in phytoplankton stocks, which was thought to be due, in part, to arrested vertical migration by mesozooplankton. These observations prompted an investigation of the relative roles of Fe enrichment and grazing pressure in controlling the magnitude of phytoplankton stocks in the NE subarctic Pacific. The grazing impact of increased mesozooplankton abundance in response to a localised Fe-induced enhancement of algal biomass was simulated by performing in vitro (6 d) grazer perturbation experiments in May 1994 and September 1995 at Ocean Station Papa (OSP), when pelagic mesozooplankton stocks are usually at their annual maximum and submaximal, respectively. Manipulations were designed to increase mesozooplankton stocks in 25L carboys after various lag-times corresponding to grazing pressure greater or equal to that in situ, and to monitor changes in chlorophyll a levels as a proxy for grazing pressure. At the onset of the experiments, in vitro mesozooplankton abundances were comparable to those in situ. Despite the addition of mesozooplankton to selected Fe-enriched carboys in May after 24, 48 and 72 h, corresponding to ca. two-fold increases in their abundances, chlorophyll a increased to ca. 2 μg l−1 in all treatments. In September, chlorophyll a levels increased five-fold to 2 μg l−1 after 4 days – but little thereafter – in the presence of up to ten-fold higher animal abundances (added at t=0) than observed in situ. Thus, Fe-induced increases in diatom growth rates were sufficiently high to escape both initial and additional grazing pressure. If and when Fe is supplied to this region, it is unlikely that mesozooplankton can respond and graze down the resulting elevated algal abundance. Theoretical calculations, based on algal growth and grazing rate data from May in this study, suggested that a greater than five-fold increase in mesozooplankton abundance, after a 48-h lag, is required to exert sufficient grazing pressure to prevent Fe-mediated increases in algal biomass. These findings are discussed in relation to the scale dependency of such events, and the pelagic ecology of other High Nitrate Low Chlorophyll regions.  相似文献   

8.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

9.
The role of mesozooplankton as consumers and transformers of primary and secondary production in the Beaufort and Chukchi Seas was examined during four cruises in spring and summer of both 2002 and 2004 as part of the western Arctic Shelf–Basin Interactions (SBI) program. Forty-seven grazing experiments using dominant mesozooplankton species and life stages were conducted at locations across the shelf, slope, and basin of the Chukchi and Beaufort Seas to measure feeding rates on both chlorophyll and microzooplankton and to determine mesozooplankton prey preferences.Mesozooplankton biomass was at all times dominated by life stages of four copepod taxa: Calanus glacialis, Calanus hyperboreus, Metridia longa, and Pseudocalanus spp. Significant interannual, seasonal, regional, between species and within species differences in grazing rates were observed. Overall, the dominant zooplankton exhibited typical feeding behavior in response to chlorophyll concentration that could be modeled using species and life-stage specific Ivlev functions. Microzooplankton were preferred prey at almost all times, with the strength of the preference positively related to the proportion of microzooplankton prey availability. Average mesozooplankton grazing impacts on both chlorophyll standing stock (0.6±0.5% d−1 in spring, 5.1±6.3% d−1 in summer) and primary production (12.8±11.8% d−1 in spring, 27.6±24.5% d−1 in summer) were quite low and varied between shelf, slope, and basin. Coincident microzooplankton grazing experiments [Sherr, E.B., Sherr, B.F., Hartz, A.J., 2009. Microzooplankton grazing impact in the Western Arctic Ocean. Deep-Sea Research II] were conducted at most stations. Together, microzooplankton–mesozooplankton grazing consumed only 44% of the total water-column primary production, leaving more than half directly available for local export to the benthos or for offshore transport into the adjacent basin.  相似文献   

10.
The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.  相似文献   

11.
Phytoplankton production was measured at the shelf edge region of the Celtic Sea in April/May 1994 at the beginning of the spring bloom. Size fractionated 14C uptake experiments showed that phytoplankton >2 μm dominated the bloom although, in the period immediately before the increase in phytoplankton biomass, picophytoplankton (<2 μm) was responsible for up to 42% of the production; in these late winter conditions, chlorophyll concentrations were generally <0.7 μg l-1 and primary production was ca. 70 mmol C m-2 d-1. As the spring bloom developed, phytoplankton production rates of 120 mmol C m-2 d-1 were measured. Chlorophyll concentration increased to >2 μg l-1 as a result of growth of larger phytoplankton, including diatoms, with large numbers of Nitzschia, Thalassionema and Chaetoceros dominating the assemblage. Picophytoplankton production declined as the spring bloom progressed. Nutrient concentrations were not depleted during the sampling period, and NO-3 concentrations were >6 μmol l-1. Nutrient assimilation rates were measured at the same time as primary production was estimated. Before the development of any substantial phytoplankton biomass, the uptake rates for ammonium and nitrate were very similar, with f-ratios ranging from 0.5 to 0.6. Assimilation of ammonium remained relatively constant after the onset of stratification and bloom development, but nitrate uptake increased by a factor of 2 or more, resulting in f-ratios >0.8. There was significant phosphate uptake in the dark, which was generally ca. 50% of the rate in the light. The C : N : P assimilation ratios changed as the bloom developed; in the pre-bloom situation, when small phytoplankton cells dominated the assemblage, the C : N assimilation ratio was variable, with some stations having ratios less than (ca 2.5), and some higher than (ca. 9), the Redfield ratio. The most actively growing assemblages had N : P ratios close to the Redfield ratio, but the C : N ratios were consistently lower. New production was found to be closely correlated with the size of the species making up the phytoplankton assemblage, and high f ratios were measured when larger phytoplankton dominated the assemblage.  相似文献   

12.
The micro- and mesozooplankton communities in surface waters of the Greenland Sea are described based on data from five cruises covering an annual cycle. Special emphasis is given to the summer period (June and August), prior to and after the descent of Calanus spp. Calanus spp. dominated the copepod community during the spring bloom and in the beginning of the summer. However, during the summer, there was a pronounced shift in the zooplankton composition in the euphotic zone. In contrast to what has been observed in other Arctic systems, smaller genera such as Pseudocalanus spp., Oncaea spp. and Oithona spp. became abundant and the total copepod biomass remained high after the Calanus spp. descended for hibernation. The peak protozooplankton biomass in the Greenland Sea (June) co-occurred with the peak in Calanus spp. Protozooplankton biomass then decreased during the summer. Growth of protozooplankton and grazing rates of the two dominating non-Calanus genera, Oithona and Pseudocalanus, were measured. For both copepod genera, protozooplankton constituted 40% or more of the diet, and maximum clearance was on prey items with an equivalent spherical diameter between 15 and 30 μm. The non-Calanus components of the zooplankton community were responsible for 70–99% of the total zooplankton grazing on phytoplankton during summer and were crucial for the recycling and respiration of primary production.  相似文献   

13.
Phytoplankton community structure is expected to shift to larger cells (e.g., diatoms) with monsoonal forcing in the Arabian Sea, but recent studies suggest that small primary producers remain active and important, even in areas strongly influenced by coastal upwelling. To better understand the role of smaller phytoplankton in such systems, we investigated growth and grazing rates of picophytoplankton populations and their contributions to phytoplankton community biomass and primary productivity during the 1995 Southwest Monsoon (August–September). Environmental conditions at six study stations varied broadly from open-ocean oligotrophic to coastal eutrophic, with mixed-layer nitrate and chlorophyll concentrations ranging from 0.01 to 11.5 μM NO3 and 0.16 to 1.5 μg Chl a. Picophytoplankton comprised up to 92% of phytoplankton carbon at the oceanic stations, 35% in the diatom-dominated coastal zone, and 26% in a declining Phaeocystis bloom. Concurrent in situ dilution and 14C-uptake experiments gave comparable ranges of community growth rates (0.53–1.05 d−1 and 0.44–1.17 d−1, to the 1% light level), but uncertainties in C:Chl a confounded agreement at individual stations. Microzooplankton grazing utilized 81% of community phytoplankton growth at the oligotrophic stations and 54% at high-nutrient coastal stations. Prochlorococcus (PRO) was present at two oligotrophic stations, where its maximum growth approached 1.4 d−1 (two doublings per day) and depth-integrated growth varied from 0.2 to 0.8 d−1. Synechococcus (SYN) growth ranged from 0.5 to 1.1 d−1 at offshore stations and 0.6 to 0.7 d−1 at coastal sites. Except for the most oligotrophic stations, growth rates of picoeukaryotic algae (PEUK) exceeded PRO and SYN, reaching 1.3 d−1 offshore and decreasing to 0.8 d−1 at the most coastal station. Microzooplankton grazing impact averaged 90, 70, and 86% of growth for PRO, SYN, and PEUK, respectively. Picoplankton as a group accounted for 64% of estimated gross carbon production for all stations, and 50% at high-nutrient, upwelling stations. Prokaryotes (PRO and SYN) contributed disproportionately to production relative to biomass at the most oligotrophic station, while PEUK were more important at the coastal stations. Even during intense monsoonal forcing in the Arabian Sea, picoeukaryotic algae appear to account for a large portion of primary production in the coastal upwelling regions, supporting an active community of protistan grazers and a high rate of carbon cycling in these areas.  相似文献   

14.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

15.
Six research cruises were conducted off the west coast of Vancouver Island between April and October of 1997 and 1998 as part of the Canadian GLOBEC project to compare nutrient and phytoplankton dynamics between ENSO (1997) and non-ENSO (1998) years. Limited sampling also was conducted during three cruises in 1999. During the 1997 ENSO period, there was a shallow thermocline (∼10 m) that resulted in a shallower mixed layer, lower salinity and density, and stronger summer stratification. In general on the shelf, the 1997 growing season was characterized by higher nitrate (7.5 μM) and silicic acid (17 μM) concentrations, lower total chlorophyll (∼76 mg m−2), lower phytoplankton carbon biomass (0.2 mg C L−1), and lower diatom abundance and biomass than in 1998. Phytoplankton assemblages were dominated by nanoplankton in 1997 and by diatoms in 1998. These results suggest that the 1997 ENSO was responsible for a reduction in the growth and biomass of larger phytoplankton cells. In mid-1998, the hydrographic characteristics off the west coast of Vancouver Island changed suddenly. The 1997 poleward transport of warm water reversed to an equatorward transport of coastal water in July 1998, which was accompanied by normal summer upwelling. During 1998, a large diatom bloom (mainly dominated by Chaetoceros debilis, Leptocylindrus danicus and to a lesser extent by Skeletomema and Pseudo-nitzschia sp.) was observed in July over the continental shelf. This large bloom resulted in chlorophyll concentrations of up to 400 mg m−2, primary productivity of up to 11 g C m−2 d−1, and near undetectable dissolved nitrogen concentrations at some of the shelf stations in 1998. In contrast, during 1997, the sub-tropical waters that were advected over the slope, resulted in low chlorophyll a and primary productivity (generally <1 g C m−2 d−1). Therefore, there was a sharp contrast between the very high primary productivity on the shelf in July 1998, due to normal nutrient replenishment from summer upwelling and outflow from the Strait of Juan de Fuca, and the lower primary productivity during the 1997 ENSO year. During 1998, non-ENSO conditions resulted in phytoplankton biomass that was twice as high on the shelf as that measured in regions beyond the continental shelf of the west coast of Vancouver Island.  相似文献   

16.
The biogeochemistry and magnitude of submarine groundwater discharge (SGD) was investigated in one of the largest tidal flat ecosystems worldwide, along the Yellow Sea coast. A representative semi-enclosed embayment located in the south eastern Yellow Sea, Hampyeong Bay, was chosen for this purpose. Groundwater and seawater samples were collected in three seasons (May, July, and September) and analyzed for Ra isotopes, nutrients, and photosynthetic pigments. The biogeochemistry of SGD was strongly influenced by tidal oscillations and seasonal precipitation changes and switched from a brackish, nutrient-enriched regime in May and July to an exclusively saline regime, with lower nutrient concentrations, in September. SGD magnitudes, calculated by using a 226Ra mass balance model, were 0.14 m3 m? 2 d? 1 in May and 0.35 m3 m? 2 d? 1 in September. A nutrient mass balance was established for the two campaigns, which suggests that SGD causes the flushing of substantial amounts of pore water nutrients into this embayment; because of SGD, the embayment acts as a source of dissolved inorganic silicates (DSi) that are transported to the open ocean. Potential C fixation rates derived from this nutrient mass balance were compared with two different models for water-column phytoplankton productivity based on water-column Chl a and local irradiation levels. The Chl a-based models generally showed lower C fixation rates than the nutrient-based mass balance, indicating removal of up to 70% of the nutrients by other primary producers, such as benthic algae. During monsoon season, when benthic algal biomass is high and nutrient fluxes are substantial due to a terrestrial component, SGD — driven benthic primary production could play a significant role in this large tidal flat ecosystem.  相似文献   

17.
A mesoscale iron fertilization experiment was carried out in the western subarctic Pacific during summer 2004. The iron-patch was traced for 26 days after the enrichment, and the abundance and behavior of meso- and microzooplankton was compared with those outside of the patch. The surface chlorophyll-a concentration in the patch was high between days 10 and 13 (2.5 mg m−3) and decreased to the initial level after day 20. Microzooplankton grazing rates, estimated by a dilution method, was mostly balanced with phytoplankton growth rates throughout the observed period. Dominant mesozooplankton species in the upper 200 m were copepods: dominated by Eucalanus bungii, Neocalanus plumchrus and Metridia pacifica. Species composition did not change in the patch over the observation period. The copepod biomass was 3–5 times higher than in Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS), the previous iron-enrichment experiment in the same area, before the bloom, and exponentially increased both inside and outside the patch, which was mainly brought by the development of N. plumchrus. The development rates of N. plumchrus were not significantly different between inside and outside the patch. Estimated grazing rate suggest that the copepod grazing was main cause of the low accumulation of phytoplankton biomass, and dominance of grazing-resistant organisms such as large ciliates, large diatoms and diatoms with extremely long setae. “Arrested migration” for M. pacifica and upward shift of vertical distribution by E. bungii were observed during the bloom period, even if the accumulation of phytoplankton biomass was very low compared to other iron-enrichment experiments. These results indicate that the copepod grazing shaped the food-web structure of the lower trophic levels (biomass and species composition) in SEEDS II.  相似文献   

18.
The macrotidal bay of Marennes-Oléron is the most important French site for shellfish production (oysters and mussels); yet the primary productivity of the phytoplankton compartment in this system is not well known. In this study, photosynthetic parameters were determined using 14C incubations of bottom and surface water samples, during fall, winter and summer (2001–2002), along a north–south transect in the bay. Estimates of primary productivity showed that water column primary production is light-limited in the bay and that a BZpI0 type model can be applied. Spatial differences existed in the bay, with a more productive northern zone and less productive river area. With a water column primary production of 185 g C m−2 yr−1, Marennes-Oléron Bay lies in the mean range for phytoplankton primary production capacity among European and North American estuaries.  相似文献   

19.
Taxonomic composition and productivity of winter and spring phytoplankton in a eutrophic estuary have been investigated in order to elucidate the carbon flux under conditions of limitation by physical factors – light and temperature. In spite of the important differences in nutrients, solar radiation and water temperature between winter and spring season, mean concentrations of particulate organic carbon were equal to 13.2 and 13.0 mgC l−1, respectively. Chlorophyll a averaged at 79 μgChl l−1 in winter, that is 69% of spring. Although community respiration accounted for only 6–26% of light saturated photosynthesis, integrated net primary production of the 1.2 m deep water column was negative until April. High attenuation of the water body (Ko = 2.9 m−1) lead to a negative carbon balance (net heterotrophy) below 35 cm for all sampling dates. Thus, the high winter POC and phytoplankton values can only originate from summer or autumn primary production. This assumption was supported by a carbon loss rate of just 3% of total organic carbon per day for the whole water column. The composition of phytoplankton was very constant through both seasons: 39% Chlorophyceae, 33% Cyanobacteria and 25% Bacillariophyceae. As expected, phytoplankton was low light acclimated, having high α values (slope of light limited photosynthesis), but moderate maximum photosynthesis rates at saturating irradiances, which were heavily affected by temperature. Calculation of net carbon flux yet showed net heterotrophy of the Bodden waters in winter and early spring were caused by external physical limitation (low surface irradiance and low temperature) in combination with a high light attenuation of the water body.  相似文献   

20.
New productivity measurements using the 15N tracer technique were conducted in the north-eastern (NE) Arabian Sea during six expeditions from 2003 to 2007, mostly in winter. Our results indicate that the NE Arabian Sea has a potential for higher new productivity during blooms. Nitrate uptake by plankton is the highest during late winter. New productivity and f-ratios in the NE Arabian Sea are mainly controlled by hydrodynamic and meteorological parameters such as wind strength, sea surface temperature (SST), mixed layer depth (MLD) and mixed layer nitrate. Deepening of the mixed layer supplies nitrate from below, which supports the observed nitrogen uptake. Higher f-ratios during blooms indicate the strong coupling between surface layers and sub-surface layers. Deepening of mixed layer below 100 m (from its inter-monsoon value between 30 and 40 m) transferred often more than 100 mmol N–NO3 m? 2 into the surface layers from below. The observed winter blooms in the region are supported by such input and are sustained for more than a month. Higher new productivity has been found in late winter, whereas transport of nitrate is maximum in early winter. In general, new production varies progressively during winter. Diurnal cycling of the mixed layer could be the reason for the under utilization of entrained nitrate during early winter. New productivity values and wind strength show significant differences during Feb–Mar 03 and Feb–Mar 04. These differences indicate that the winter cooling and parameters related the biological productivity also vary inter-annually. However, the difference between the new productivity values between Feb–Mar 03 and Feb–Mar 04 is much lower than the difference between Jan 03 and Feb–Mar 03. The results suggest that amplitude of seasonal variation is higher than the inter-annual variation in the region. During spring, Fickian diffusive fluxes of nitrate into the surface layer range from 0.51 to 1.38 mmol N–NO3 m? 2 day? 1, and can account for 67% and 78% of the observed nitrogen uptake in the coastal and open ocean regions, respectively. We document the intra-seasonal and inter-annual variations in new productivity during winter and identify sources of nitrate which support the observed productivity during spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号