首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The mean dynamic topography of the surface of the North Atlantic is estimated using an inverse model of the ocean circulation constrained by hydro-graphic and altimetric observations. In the North Atlantic, altimetric observations have no significant impact on the topography estimate because of the limited precision of available geoid height models. They have a significant impact, however, when uncertainties in the density field are increased to simulate interpolation errors in regions where hydrographic data are scarce. This result, which moderates the conclusion drawn by Ganachaud and co-workers of no significant contribution of altimetric observations to the determination of the large-scale steady circulation, reflects the simple idea that altimetric data are most useful near the surface of the ocean and in areas where the hydrography is poorly determined. One application of the present inverse estimate of the mean dynamic topography is to compute a geoid height correction over the North Atlantic which reduces the uncertainty in the geoid height expanded to spherical harmonic 40 down to a level of about 5 cm.  相似文献   

2.
The Princeton Ocean Model (POM) with generalized coordinate system (POMgcs) is used to study the summer surface-layer thermal response to surface gravity waves in the Yellow Sea (YS). The parameterization schemes of wave breaking developed by Mellor and Blumberg (J Phys Oceanogr 34:693–698, 2004) and Kantha and Clayson (Ocean Model 6:101–124, 2004), respectively, and Stokes production developed by Kantha and Clayson (Ocean Model 6:101–124, 2004) are both included in the Mellor–Yamada turbulence closure model Mellor and Yamada (Rev Geophys 20:851–875, 1982) of POMgcs. Numerical results show that surface gravity waves impact the depth of surface mixed layer of temperature in the YS in summer. The surface mixed layer in the YS cannot be reproduced well and has a visible difference from the observation if the parameterization schemes are not included. A diagnostic analysis of turbulent kinetic energy suggests that both Stokes production and wave breaking play key roles in enhancing the turbulent mixing near the sea surface in the YS. Stokes production seems to have a greater impact throughout the upper mixed layer in the YS in summer than that of wave breaking. In addition, a diagnostic analysis of the momentum balance shows that Coriolis–Stokes forcing has a significant effect on the momentum budget in the upper layer in the YS, and surface gravity waves are able to reduce the velocity of mean flow near the surface and make the mean flow near the surface more homogeneous vertically in the YS.  相似文献   

3.
4.
The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.  相似文献   

5.
Estimation of ocean circulation is investigated via assimilation of satellite measurements of the dynamic ocean topography (DOT) into the global finite-element ocean model (FEOM). The DOT was obtained by means of a geodetic approach from carefully cross-calibrated multi-mission altimeter data and GRACE gravity fields. The spectral consistency was achieved by consistently filtering both, the sea surface and the geoid. The filter length is determined by the spatial resolution of the gravity field and corresponds to approximately 241 km half width for the GRACE-based gravity field model ITG-Grace03s.The assimilation of the geodetic DOT was performed by employing a local singular evolutive interpolated Kalman (SEIK) filter in combination with the method of weighting of observations. It is shown that this approach leads to a successful assimilation technique that reduced the RMS difference between the model and the data from 16 cm to 5 cm during one year of assimilation. The ocean model returns an optimized mean dynamic ocean topography. The effects of assimilation on transport estimates across several hydrographic World Ocean Circulation Experiment (WOCE) sections show improvements compared to the FEOM run without data assimilation. As a result of the assimilation, DOT estimates are available in the polar or coastal regions where the geodetic estimates from satellite data alone are not adequate. Furthermore, more realistic features of the ocean can be seen in these areas compared to those obtained using the filtered data fields.  相似文献   

6.
The altimetric satellite signal is the sum of the geoid and the dynamic topography, but only the latter is relevant to oceanographic applications. Poor knowledge of the geoid has prevented oceanographers from fully exploiting altimetric measurements through its absolute component, and applications have concentrated on ocean variability through analyses of sea level anomalies. Recent geodetic missions like CHAMP, GRACE and the forthcoming GOCE are changing this perspective. In this study, data assimilation is used to reconstruct the Tropical Pacific Ocean circulation during the 1993–1996 period. Multivariate observations are assimilated into a primitive equation ocean model (OPA) using a reduced order Kalman filter (the Singular Evolutive Extended Kalman filter). A 6-year (1993–1998) hindcast experiment is analyzed and validated by comparison with observations. In this experiment, the new capability offered by an observed absolute dynamic topography (built using the GRACE geoid to reference the altimetric data) is used to assimilate, in an efficient way, the in-situ temperature profiles from the TAO/TRITON moorings together with the T/P and ERS1&2 altimetric signal. GRACE data improves compatibility between both observation data sets. The difficulties encountered in this regard in previous studies such as Parent et al. (J Mar Syst 40–41:381–401, 2003) are now circumvented. This improvement helps provide more efficient data assimilation, as evidenced, by assessing the results against independent data. This leads in particular to significantly more realistic currents and vertical thermal structures.  相似文献   

7.
Presently, two satellite missions, Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE), are making detailed measurements of the Earth’s gravity field, from which the geoid can be obtained. The mean dynamic topography (MDT) is the difference between the time-averaged sea surface height and the geoid. The GOCE mission is aimed at determining the geoid with superior accuracy and spatial resolution, so that a more accurate MDT can be estimated. In this study, we determine the mean positions of the Antarctic Circumpolar Current fronts using the purely geodetic estimates of the MDT constructed from an altimetric mean sea surface and GOCE and GRACE geoids. Overall, the frontal positions obtained from the GOCE and GRACE MDTs are close to each other. This means that these independent estimates are robust and can potentially be used to validate frontal positions obtained from sparse and irregular in situ measurements. The geodetic frontal positions are compared to earlier estimates as well as to those derived from MDTs based on satellite and in situ measurements and those obtained from an ocean data synthesis product. The position of the Sub-Antarctic Front identified in the GOCE MDT is found to be in better agreement with the previous estimates than that identified in the GRACE MDT. The geostrophic velocities derived from the GOCE MDT are also closer to observations than those derived from the GRACE MDT. Our results thus show that the GOCE mission represents an improvement upon GRACE in terms of the time-averaged geoid.  相似文献   

8.
According to the features of spatial spectrum of the dynamic ocean topography (DOT),wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96),combining an altimetry-derived mean sea surface height model (KMSS04),two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter,and the DOT models asso-ciated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global,Kuroshio and equatorial Pacific regions with that from oceanography,and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale,the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography,which indicates that ocean currents detected by satellite measurement have reached relatively high precision.  相似文献   

9.
10.
The development of knowledge of global biogeography of the oceans from sixteenthcentury European voyages of exploration to present-day use of satellite remote sensing is reviewed in three parts; the pre-satellite era (1513–1977), the satellite era leading to a first global synthesis (1978–1998), and more recent studies since 1998. The Gulf Stream was first identified as a strong open-ocean feature in 1513 and by the eighteenth century, regular transatlantic voyages by sailing ships had established the general patterns of winds and circulation, enabling optimisation of passage times. Differences in water temperature, water colour and species of animals were recognised as important cues for navigation. Systematic collection of information from ships’ logs enabled Maury (The Physical Geography of the Sea Harper and Bros. New York 1855) to produce a chart of prevailing winds across the entire world’s oceans, and by the early twentieth century the global surface ocean circulation that defines the major biogeographic regions was well-known. This information was further supplemented by data from large-scale plankton surveys. The launch of the Coastal Zone Color Scanner, specifically designed to study living marine resources on board the Nimbus 7 polar orbiting satellite in 1978, marked the advent of the satellite era. Over subsequent decades, correlation of satellite-derived sea surface temperature and chlorophyll data with in situ measurements enabled Longhurst (Ecological Geography of the Sea. Academic Press, New York 1998) to divide the global ocean into 51 ecological provinces with Polar, Westerly Wind, Trade Wind and Coastal Biomes clearly recognisable from earlier subdivisions of the oceans. Satellite imagery with semi-synoptic images of large areas of the oceans greatly aided definition of boundaries between provinces. However, ocean boundaries are dynamic, varying from season to season and year to year. More recent work has focused on the study of variability of currents, fronts and eddies, which are often the focus of high biological productivity. Direct tracking of animals using satellite-based systems has helped resolve the biological function of such features and indeed animals instrumented in this way have helped the study of such features in three dimensions, including depths beyond the reach of conventional satellite remote sensing. Patterns of surface productivity detected by satellite remote sensing are reflected in deep sea life on the sea floor at abyssal depths >3,000 m. Satellite remote sensing has played a major role in overcoming the problems of large spatial scales and variability in ocean dynamics and is now an essential tool for monitoring global change.  相似文献   

11.
对GEOSAT测高卫星在中国近海区域(0°-35°N,105°-127°E)以及127°-135°E内6个ERM周期(1987年1月1日-4月12日)的地球物理数据记录(GDR)中的数据进行了编辑和预处理.根据卫星弧段的实际长度选取了混合轨道误差模型,并采用最小二乘技术对上升弧段与下降弧段交叠点处的不符值进行了平差计算.处理结果表明,所选用的方法可以大大地消除径向轨道误差的影响,使交叠点处的不符值由原来的56cm(RMS)降低到现在的24cm(RMS)在此基础上,构造出6个1°×1°的中国近海海平面及其平均海平面.该平面被称为"测高大地水准面"与美国Ohio州立大学的OSU91A重力场模型的大地水准面相比,两者具有同等量级的精度及一致的形态。  相似文献   

12.
A method for splitting sea surface height measurements from satellite altimetry into geoid undulations and sea surface topography is presented. The method is based on a combination of the information from altimeter data and a dynamic sea surface height model. The model consists of geoid undulations and a quasi-geostrophic model for expressing the sea surface topography. The goal is the estimation of those values of the parameters of the sea surface height model that provide a least-squares fit of the model to the data. The solution is accomplished by the adjoint method which makes use of the adjoint model for computing the gradient of the cost function of the least-squares adjustment and an optimization algorithm for obtaining improved parameters. The estimation is applied to the North Atlantic. ERS-1 altimeter data of the year 1993 are used. The resulting geoid agrees well with the geoid of the EGM96 gravity model.  相似文献   

13.
The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50–100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471–2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645–2662, 1997; Chelton et al. Prog Oceanogr 91: 167–216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445–454, 1970) and Weiss (Physica D 48: 273–294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.  相似文献   

14.
The mean sea surface height (MSSH) refers to the average of the long-term sea height. The quasi-sea surface topography (QSST) is usually defined as the height difference between the MSSH and the geoid. As to 100 years of time yardstick of geodesy, the time that satellite altimetry data sets spanned is relatively shorter, in this paper, the QSST refers to the residual sea surface height (RSSH) that shows the height dif-ference between MSSH derived from altimetry and the geoid[1]. As w…  相似文献   

15.
基于卫星测高交叉点的海洋表面地转流速度   总被引:3,自引:1,他引:2       下载免费PDF全文
在流体静力平衡状态下,海洋Coriolis力和压力梯度平衡就形成地转流,世界上大多数海流都近似为地转流.本文利用卫星测高交叉点方法计算海洋表面地转流速度,分析了利用测高交叉点计算地转流速度的不确定性,上升和下降弧段的海面倾斜在分辨率50 km上可以达到10-7量级,才可能获得优于10 cm/s的地转流速度.在低纬度或者纬度接近卫星轨道倾角的地区,由交叉点方法计算的地转流速度精度低于中纬度地区.以中国台湾东部黑潮为试验区,利用最新的中国台湾周边海域大地水准面模型参考场计算高精度的大地水准面高,利用TOPEX/Poseidon和Jason-1的GDR数据(2002~2005年)计算海面高,然后计算交叉点的动力高,确定交叉点的地转流速度,结果与中国台湾NCOR(National Center for Ocean Research)的流速基本一致.  相似文献   

16.
17.
Temperature data from nine boreholes in the Carpathian orogen in Romania were used to obtain information on the ground surface temperature history (GSTH) in the last 250?years. The temperature measurements were taken with a thermistor probe (sensitivity in the 10 mK range) using the stop-and-go technique, at 10 m intervals, in the depth range of 20–580?m. The least squares inverse modelling approach of Tarantola and Valette (J Geophys 50:159–170, 1982) was used to infer the GSTH. Long-term air temperature records available from the Romanian weather station network were used as a comparison term for the first 100–150?years of the GSTH, and as a forcing function in a POM-SAT model that combines borehole temperature profiles (BTPs) and meteorological time series (surface air temperature, SAT) to produce information on the so-called pre-observational mean (POM). Results from a global circulation model for the Romanian area are incorporated in the discussion as well.  相似文献   

18.
It is well known that the quality of gravity modelling of the Earth’s lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north–south and west–east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.  相似文献   

19.
It has been two decades since the last comprehensive standard model of ambient earth noise was published Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The PETERSON model was updated by analyzing the absolute quietest conditions for stations within the GSN (Berger et al. in J Geophys Res 109, 2005; Mcnamara and Buland in Bull Seism Soc Am 94:1517–1527, 2004; Ringler et al. in Seismol Res Lett 81(4) doi:10.1785/gssrl.81.4.605, 2010). Unfortunately, both the original model and the updated models did not include any deployed station in North Africa and Middle East, which reflects the noise levels within the desert environment of those regions. In this study, a survey was conducted to create a new seismic noise model from very broadband stations which recently deployed in North Africa. For this purpose, 1 year of continuous recording of seismic noise data of the Egyptian National Seismic Network (ENSN) was analyzed in order to create a new noise model. Seasonal and diurnal variations in noise spectra were recorded at each station. Moreover, we constructed a new noise model for each individual station. Finally, we obtained a new cumulative noise model for all the stations. We compared the new high-noise model (EHNM) and new low-noise model (ELNM) with both the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The obtained noise levels are considerably lower than low-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993) at ultra long period band (ULP band), but they are still below the high-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The results of this study could be considered as a first step to create permanent seismic noise models for North Africa and Middle East regions.  相似文献   

20.
Four new gravity field models from GOCE, two of them combined with GRACE, are compared here with EGM2008. The objectives are to look into the differences in consecutive ranges of the spherical harmonic expansion globally as well as in selected geographical regions and in the regions of the various data sources used for EGM2008. In general, GOCE is able to contribute to improved global gravity models in the spherical harmonic range between 120 and 200 (and above). The agreement between EGM2008 and the GOCE models is very good in well-surveyed regions such as North America, Europe and Australia, with geoid RMS-differences on the order of 4–6 cm. In other regions, where the surface gravity data available for the development of EGM2008 were poor, such as South America, Africa, South-East Asia or China the RMS-differences are on a level of 30 cm. Here GOCE leads to a significant improvement. These findings are confirmed by the analysis of the areas of the various EGM2008 data sources. In the regions of the so-called “fill-in” data of EGM2008 RMS-geoid height differences are high. In Antarctica GOCE also gives important improvements in terms of spatial resolution and accuracy. In general, the agreement between EGM2008 and the GOCE-models up to degree and order (d/o) 200 is good, with a global (excluding the polar gaps of GOCE orbits, throughout) geoid difference RMS of 11 cm, in the ocean areas 8 cm and 20 cm in the continental areas. GOCE models are better suited for ocean circulation studies because no prior ocean information enters into the data reduction process, as it is the case when deducing gravity anomalies from an altimetric mean sea surface. On the other hand, the good consistency between GOCE-models and EGM2008 in ocean areas very likely indicates that the influence of ocean circulation information on EGM2008 is rather small. The four tested GOCE models behave similarly except at the highest latitudes where GOCE lacks data due to its orbit inclination of 96.5° and some form of regularization which has to be applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号