首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Das  T.K.  Nag  T.K. 《Solar physics》1999,187(1):177-184
In the present paper we look for periodicities in the mean solar magnetic field observed at Stanford Observatory, using Fourier transform and autocorrelation techniques. Apart from the periodicity equal to that of the synodic rotational modulation of the Sun, other periods were also found by examining the time series formed at different epochs of the solar cycle. From the aforesaid analyses a 14-day periodicity has been confirmed, which is found to occur in all the cases taken under consideration.  相似文献   

2.
3.
An extreme ultraviolet (EUV) imaging spectrograph for the wavelength range from 235 to 450 Å has been developed and used for high resolution observations of the Sun. The instrument incorporates a glancing incidence Wolter Type II Telescope and a near-normal incidence toroidal grating spectrograph to achieve near-stigmatic performance over this spectral range. The design of the spectrograph entrance aperture enables both stigmatic spectra with spectral resolution adequate to observe emission line profiles and spectroheliograms of restricted portions of the Sun to be obtained concurrently. In this paper we describe the design and performance of the instrument and provide an overview of results obtained during a sounding rocket flight on May 5, 1989.  相似文献   

4.
The Heliospheric Imager (HI) instruments on the Solar TErrestrial RElations Observatory (STEREO) observe solar plasma as it streams out from the Sun and into the heliosphere. The telescopes point off-limb (from about 4° to 90° elongation) and so the Sun is not in the field of view. Hence, the Sun cannot be used to confirm the instrument pointing. Until now, the pointing of the instruments have been calculated using the nominal preflight instrument offsets from the STEREO spacecraft together with the spacecraft attitude data. This paper develops a new method for deriving the instrument pointing solutions, along with other optical parameters, by comparing the locations of stars identified in each HI image with the known star positions predicted from a star catalogue. The pointing and optical parameters are varied in an autonomous manner to minimise the discrepancy between the predicted and observed positions of the stars. This method is applied to all HI observations from the beginning of the mission to the end of April 2008. For the vast majority of images a good attitude solution has been obtained with a mean-squared deviation between the observed and predicted star positions of one image pixel or less. Updated values have been obtained for the instrument offsets relative to the spacecraft, and for the optical parameters of the HI cameras. With this method the HI images can be considered as “self-calibrating,” with the actual instrument offsets calculated as a byproduct. The updated pointing results and their by-products have been implemented in SolarSoft.  相似文献   

5.
Makarov  V.I.  Tlatov  A.G.  CALLEBaUT  D.K.  Obridko  V.N.  Shelting  B.D. 《Solar physics》2001,198(2):409-421
Hα magnetic synoptic charts of the Sun are processed for 1915–1999 and the spherical harmonics are calculated. It is shown that the polarity distribution of the magnetic field on Hα charts is similar to the polarity distribution of the Stanford magnetic field observations during 1975–1999. The index of activity of the large-scale magnetic field A(t), representing the sum of the intensities of dipole and octupole components, is introduced. It is shown that the cycle of the large-scale magnetic field of the Sun precedes on the average by 5.5 years the sunspot activity cycle, W(t). This means that the weak large-scale magnetic fields of the Sun do not result from decay and diffusion of strong fields from active regions as it is supposed in all modern theories of the solar cycle. On the basis of the new data the intensity of the current solar cycle 23 is predicted and some aspects of the theory of the solar cycle are discussed.  相似文献   

6.
7.
The mean magnetic field (MMF) of the photosphere of the Sun as a star was measured in 2001?C2010 at the Crimean Astrophysical Observatory using two Fe I absorption lines with ?? = 524.7 nm and ?? = 525.0 nm. The regression coefficient b for 1054 pairs of daily values measured simultaneously on both lines equals 0.82 (a correlation coefficient is 0.94; magnetic field strengths determined by the line with ?? = 525.0 nm are lower than those for the line with ?? = 524.7 nm). However, the b value varied significantly along with phases of the 11-year cycle from 0.88 in 2003 to 0.49 in 2009. It is difficult to ascribe these variations to purely instrumental or solar causes. Moreover, the semiannual value of b decreased with the decrease in the absolute strength of the MMF, which contradicts the model of thin magnetic flux ropes of the photosphere. Similar behavior of b was also observed in the comparison of MMF measured at the Crimean Astrophysical Observatory and Stanford by the line with ?? = 525.0 nm. The inconsistency of the results obtained by these two iron lines on different instruments has been noted. It has been concluded that the variance in and odd behavior of b are predetermined not only by the instrument and the Sun (by the so-called fine structure of the photosphere field), but also by the act of measuring. When recording solar (and stellar) magnetic fields and modeling atmospheric processes, quantum effects have to be taken into account, such as nonlocality, indistinguishability, and the entanglement of photons, as well as that a photon only acquires its properties at the exact moment of its detection. The best approximation to reality can be achieved by averaging the MMF measurements carried out with different magnetographs and in different spectral lines.  相似文献   

8.
The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives.The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 m. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4 over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument.To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25) field centered about 160 north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field.MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.The MDI Engineering Team leaders include: D. Akin, B. Carvalho, R. Chevalier, D. Duncan, C. Edwards, N. Katz, M. Levay, R. Lindgren, D. Mathur, S. Morrison, T. Pope, R. Rehse, and D. Torgerson.  相似文献   

9.
A north-south array has been added to the Mark II Nançay Radioheliograph (Radioheliograph Group, 1977). This instrument gives at 169 MHz two one-dimensional images of the Sun in the east-west and north-south directions including measurement of the circular polarization ratio. The main performances of this instrument are high space and time resolutions, flexible on line data processing and the possibility of off-line interactive data reduction. The method of calibration is briefly described. A few observations are presented.  相似文献   

10.
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA’s small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA’s In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.  相似文献   

11.
The Total Irradiance Monitor (TIM): Science Results   总被引:2,自引:0,他引:2  
The solar observations from the Total Irradiance Monitor (TIM) are discussed since the SOlar Radiation and Climate Experiment (SORCE) launch in January 2003. The TIM measurements clearly show the background disk-integrated solar oscillations of generally less than 50 parts per million (ppm) amplitude over the ∼2 ppm instrument noise level. The total solar irradiance (TSI) from the TIM is about 1361 W/m2, or 4–5 W/m2 lower than that measured by other current TSI instruments. This difference is not considered an instrument or calibration error. Comparisons with other instruments show excellent agreement of solar variability on a relative scale. The TIM observed the Sun during the extreme activity period extending from late October to early November 2003. During this period, the instrument recorded both the largest short-term decrease in the 25-year TSI record and also the first definitive detection of a solar flare in TSI, from which an integrated energy of roughly (6± 3)×1032 ergs from the 28 October 2003 X17 flare is estimated. The TIM has also recorded two planets transiting the Sun, although only the Venus transit on 8 June 2004 was definitive.  相似文献   

12.
A new radio spectrograph, dedicated to observe the Sun, has been recently commissioned by the Indian Institute of Astrophysics (IIA) at the Gauribidanur Radio Observatory, about 100 km North of Bangalore. The instrument, called the Gauribidanur Low-frequency Solar Spectrograph (GLOSS), operates in the frequency range≈40?–?440 MHz. Radio emission in this frequency range originates close to the Sun, typically in the radial distance range r≈1.1?–?2.0 R. This article describes the characteristics of the GLOSS and the first results.  相似文献   

13.
The Molonglo Observatory Synthesis Telescope (MOST) has recently been modified to permit observations of the Sun. With a collecting area of 18000 m2, MOST makes high-sensitivity measurements in right-hand circular polarisation over a 3 MHz bandwidth at 843 MHz. The maximum baseline of the multi-element interferometer is 1600 m, so that one-dimensional spatial resolution as fine as 32 arc sec is available. A resistor array produces simultaneously a set of 64 beams separated by 22 arc sec, which may be offset electronically to cover the entire Sun in a few seconds. Observations may be made with a beam shape corresponding to either a multiplying or an adding interferometer. By exploiting the technique of Earth-rotation synthesis the telescope may be used to make two-dimensional maps of the Sun at the time of the austral solstice with a synthesized beamwidth of 43 × 110 arc sec. This paper describes the instrument and the procedures used to make various types of solar observations, and exhibits some of the first data collected.  相似文献   

14.
Using the visible airglow photometer on the Atmosphere Explorer-C satellite, we have mapped the zodiacal light surface brightness at the wavelengths monitored by the instrument: 3371, 4278, 5200, 5577, 6300, and 7319 Å. The study constitutes a survey over this wavelength range, covering most of the celestial sphere, from altitudes above the atmospheric emissions, and free from atmospheric scattering and attenuation. The intensity variations reveal enhancements near elongations of 130°, and possibly near 60°, at all wavelengths. The intensity of the zodiacal light near the ecliptic pole is found to be ~30 S10. The color ratio with respect to the Sun is found to be redder than the Sun (0.7) at all elongations.  相似文献   

15.
The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) telescope was launched on 2 November 2009 onboard the ESA PROBA2 technological mission and has acquired images of the solar corona every one to two minutes for more than two years. The most important technological developments included in SWAP are a radiation-resistant CMOS-APS detector and a novel onboard data-prioritization scheme. Although such detectors have been used previously in space, they have never been used for long-term scientific observations on orbit. Thus SWAP requires a careful calibration to guarantee the science return of the instrument. Since launch we have regularly monitored the evolution of SWAP’s detector response in-flight to characterize both its performance and degradation over the course of the mission. These measurements are also used to reduce detector noise in calibrated images (by subtracting dark-current). Because accurate measurements of detector dark-current require large telescope off-points, we also monitored straylight levels in the instrument to ensure that these calibration measurements are not contaminated by residual signal from the Sun. Here we present the results of these tests and examine the variation of instrumental response and noise as a function of both time and temperature throughout the mission.  相似文献   

16.
We provide a brief overview of the main methods and results of spectroscopic studies of several active plasma structures in the solar corona with the RES spectroheliograph in the SPIRIT experiment. This instrument has allowed ~ 150 monochromatic images of the entire Sun in extreme UV (EUV) lines in the 175-to 205-and 280-to 330-Å spectral bands and in the X-ray Mg XII 8.42-Å line to be simultaneously obtained for the first time. The RES instrument has taken ~ 300000 spectroheliograms with a high time resolution over the period of its operation since the launch of the satellite on July 31, 2001. The accumulated data were used to construct and calibrate the spectra of solar flares and compact active regions with a spectral resolution of 0.04 Å. Based on EUV spectra, we determined the temperature distributions of the electron density and differential emission measure (DEM) for several active plasma structures observed in the RES X-ray channel: active regions, flares, and spiders. The results of modeling the physical conditions in an emitting plasma were used to analyze the formation and dynamics of plasma structures detected in the monochromatic X-ray images of the entire Sun.  相似文献   

17.
The Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) is an array of four normal-incidence reflecting telescopes that image the Sun in ten EUV and UV wavelength channels. We present the initial photometric calibration of AIA, based on preflight measurements of the response of the telescope components. The estimated accuracy is of order 25%, which is consistent with the results of comparisons with full-disk irradiance measurements and spectral models. We also describe the characterization of the instrument performance, including image resolution, alignment, camera-system gain, flat-fielding, and data compression.  相似文献   

18.
The recently upgraded system of the ground-based Global Oscillation Network Group (GONG) network of helioseismic observatories has started to provide higher-resolution solar oscillation measurements suitable for local helioseismic studies. Selecting simultaneously observed regions on the Sun by both GONG and the space-borne Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we perform a comparative analysis of time-distance measurements focussing on the noise properties.  相似文献   

19.
An analysis of spatially-resolved measurements of the intensity of the photospheric continuum by the Michelson Doppler Imager (MDI) on the SOHO spacecraft indicates that these data can be used to study variations of the Total Solar Irradiance (TSI). Since the techniques employed depend upon ratios of intensities measured by MDI, they are independent of the absolute photometric calibration of the instrument. The results suggest that, while it is possible to account for short-term (weeks to months) variation in TSI by variations in the irradiance contributions of regions with enhanced magnetic fields (larger than ten G as measured by MDI), the longer-term variations are influenced significantly by variations in the brightness of the quiet Sun, defined here as regions with magnetic field magnitudes smaller than ten G. The latter regions cover a substantial fraction of the solar surface, ranging from approximately 90% of the Sun near solar minimum to 70% near solar maximum. The results provide evidence that a substantial fraction, 50% or more, of the longer term (≥one year) variation in TSI is due to changes in the brightness of the quiet Sun.  相似文献   

20.
The source of the poloidal magnetic field was fixed using a uniform series of surface low-resolution magnetic field observations begun at Wilcox Solar Observatory at Stanford. The results obtained confirm the idea that low-frequency dynamo waves with a period approximately equal to 22 years and a high-frequency wave of a quasi-two-year period can coexist. It seems that an interaction between these components in the convection zone takes place on the Sun. Surface large-scale solar magnetic fields are analyzed using a two-dimensional Fourier method technique to study the poloidal field distribution. The first harmonic approximately equals the period of the magnetic cycle, appears at all latitudes, and reaches its the maximum value in the polar regions. Moreover, spectral analyses of axisymmetric magnetic field derivative in time found that the second important harmonic of a period approximately equal to two years appears at all latitudes. This second high-frequency harmonic dominates the polar latitude regions at the same time as the low-frequency one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号