首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
ABSTRACT

Digital Earth has seen great progress during the last 19 years. When it entered into the era of big data, Digital Earth developed into a new stage, namely one characterized by ‘Big Earth Data’, confronting new challenges and opportunities. In this paper we give an overview of the development of Digital Earth by summarizing research achievements and marking the milestones of Digital Earth’s development. Then, the opportunities and challenges that Big Earth Data faces are discussed. As a data-intensive scientific research approach, Big Earth Data provides a new vision and methodology to Earth sciences, and the paper identifies the advantages of Big Earth Data to scientific research, especially in knowledge discovery and global change research. We believe that Big Earth Data will advance and promote the development of Digital Earth.  相似文献   

2.
ABSTRACT

Many visions for geospatial technology have been advanced over the past half century. Initially researchers saw the handling of geospatial data as the major problem to be overcome. The vision of geographic information systems arose as an early international consensus. Later visions included spatial data infrastructure, Digital Earth, and a nervous system for the planet. With accelerating advances in information technology, a new vision is needed that reflects today’s focus on open and multimodal access, sharing, engagement, the Web, Big Data, artificial intelligence, and data science. We elaborate on the concept of geospatial infrastructure, and argue that it is essential if geospatial technology is to contribute to the solution of problems facing humanity.  相似文献   

3.
ABSTRACT

In this opinion paper, we, a group of scientists from environmental-, geo-, ocean- and information science, argue visual data exploration should become a common analytics approach in Earth system science due to its potential for analysis and interpretation of large and complex spatio-temporal data. We discuss the challenges that appear such as synthesis of heterogeneous data from various sources, reducing the amount of information and facilitating multidisciplinary, collaborative research. We argue that to fully exploit the potential of visual data exploration, several bottlenecks and challenges have to be addressed: providing an efficient data management and an integrated modular workflow, developing and applying suitable visual exploration concepts and methods with the help of effective and tailored tools as well as generating and raising the awareness of visual data exploration and education. We are convinced visual data exploration is worth the effort since it significantly facilitates insight into environmental data and derivation of knowledge from it.  相似文献   

4.
ABSTRACT

Big Earth Data has experienced a considerable increase in volume in recent years due to improved sensing technologies and improvement of numerical-weather prediction models. The traditional geospatial data analysis workflow hinders the use of large volumes of geospatial data due to limited disc space and computing capacity. Geospatial web service technologies bring new opportunities to access large volumes of Big Earth Data via the Internet and to process them at server-side. Four practical examples are presented from the marine, climate, planetary and earth observation science communities to show how the standard interface Web Coverage Service and its processing extension can be integrated into the traditional geospatial data workflow. Web service technologies offer a time- and cost-effective way to access multi-dimensional data in a user-tailored format and allow for rapid application development or time-series extraction. Data transport is minimised and enhanced processing capabilities are offered. More research is required to investigate web service implementations in an operational mode and large data centres have to become more progressive towards the adoption of geo-data standard interfaces. At the same time, data users have to become aware of the advantages of web services and be trained how to benefit from them most.  相似文献   

5.
Abstract

Global challenges (such as economy and natural hazards) and technology advancements have triggered international leaders and organizations to rethink geosciences and Digital Earth in the new decade. The next generation visions pose grand challenges for infrastructure, especially computing infrastructure. The gradual establishment of cloud computing as a primary infrastructure provides new capabilities to meet the challenges. This paper reviews research conducted using cloud computing to address geoscience and Digital Earth needs within the context of an integrated Earth system. We also introduce the five papers selected through a rigorous review process as exemplar research in using cloud capabilities to address the challenges. The literature and research demonstrate that spatial cloud computing provides unprecedented new capabilities to enable Digital Earth and geosciences in the twenty-first century in several aspects: (1) virtually unlimited computing power for addressing big data storage, sharing, processing, and knowledge discovering challenges, (2) elastic, flexible, and easy-to-use computing infrastructure to facilitate the building of the next generation geospatial cyberinfrastructure, CyberGIS, CloudGIS, and Digital Earth, (3) seamless integration environment that enables mashing up observation, data, models, problems, and citizens, (4) research opportunities triggered by global challenges that may lead to breakthroughs in relevant fields including infrastructure building, GIScience, computer science, and geosciences, and (5) collaboration supported by cloud computing and across science domains, agencies, countries to collectively address global challenges from policy, management, system engineering, acquisition, and operation aspects.  相似文献   

6.
ABSTRACT

Big Data has emerged in the past few years as a new paradigm providing abundant data and opportunities to improve and/or enable research and decision-support applications with unprecedented value for digital earth applications including business, sciences and engineering. At the same time, Big Data presents challenges for digital earth to store, transport, process, mine and serve the data. Cloud computing provides fundamental support to address the challenges with shared computing resources including computing, storage, networking and analytical software; the application of these resources has fostered impressive Big Data advancements. This paper surveys the two frontiers – Big Data and cloud computing – and reviews the advantages and consequences of utilizing cloud computing to tackling Big Data in the digital earth and relevant science domains. From the aspects of a general introduction, sources, challenges, technology status and research opportunities, the following observations are offered: (i) cloud computing and Big Data enable science discoveries and application developments; (ii) cloud computing provides major solutions for Big Data; (iii) Big Data, spatiotemporal thinking and various application domains drive the advancement of cloud computing and relevant technologies with new requirements; (iv) intrinsic spatiotemporal principles of Big Data and geospatial sciences provide the source for finding technical and theoretical solutions to optimize cloud computing and processing Big Data; (v) open availability of Big Data and processing capability pose social challenges of geospatial significance and (vi) a weave of innovations is transforming Big Data into geospatial research, engineering and business values. This review introduces future innovations and a research agenda for cloud computing supporting the transformation of the volume, velocity, variety and veracity into values of Big Data for local to global digital earth science and applications.  相似文献   

7.
Big Data Analytics for Earth Sciences: the EarthServer approach   总被引:1,自引:0,他引:1  
Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.  相似文献   

8.
ABSTRACT

Discrete global grid systems have become an important component of Digital Earth systems. However, previously there has not existed an easy way to map between named places (toponyms) and the cells of a discrete global grid system. The lack of such a tool has limited the opportunities to synthesize social place-based data with the more standard Earth and environmental science data currently being analyzed in Digital Earth applications. This paper introduces Wāhi, the first gazetteer to map entities from the GeoNames database to multiple discrete global grid systems. A gazetteer service is presented that exposes the grid system and the associated gazetteer data as Linked Data. A set of use cases for the discrete global grid gazetteer is discussed.  相似文献   

9.
Abstract

The vision of a Digital Earth calls for more dynamic information systems, new sources of information, and stronger capabilities for their integration. Sensor networks have been identified as a major information source for the Digital Earth, while Semantic Web technologies have been proposed to facilitate integration. So far, sensor data are stored and published using the Observations & Measurements standard of the Open Geospatial Consortium (OGC) as data model. With the advent of Volunteered Geographic Information and the Semantic Sensor Web, work on an ontological model gained importance within Sensor Web Enablement (SWE). In contrast to data models, an ontological approach abstracts from implementation details by focusing on modeling the physical world from the perspective of a particular domain. Ontologies restrict the interpretation of vocabularies toward their intended meaning. The ongoing paradigm shift to Linked Sensor Data complements this attempt. Two questions have to be addressed: (1) how to refer to changing and frequently updated data sets using Uniform Resource Identifiers, and (2) how to establish meaningful links between those data sets, that is, observations, sensors, features of interest, and observed properties? In this paper, we present a Linked Data model and a RESTful proxy for OGC's Sensor Observation Service to improve integration and inter-linkage of observation data for the Digital Earth.  相似文献   

10.
ABSTRACT

Linked Data is known as one of the best solutions for multisource and heterogeneous web data integration and discovery in this era of Big Data. However, data interlinking, which is the most valuable contribution of Linked Data, remains incomplete and inaccurate. This study proposes a multidimensional and quantitative interlinking approach for Linked Data in the geospatial domain. According to the characteristics and roles of geospatial data in data discovery, eight elementary data characteristics are adopted as data interlinking types. These elementary characteristics are further combined to form compound and overall data interlinking types. Each data interlinking type possesses one specific predicate to indicate the actual relationship of Linked Data and uses data similarity to represent the correlation degree quantitatively. Therefore, geospatial data interlinking can be expressed by a directed edge associated with a relation predicate and a similarity value. The approach transforms existing simple and qualitative geospatial data interlinking into complete and quantitative interlinking and promotes the establishment of high-quality and trusted Linked Geospatial Data. The approach is applied to build data intra-links in the Chinese National Earth System Scientific Data Sharing Network (NSTI-GEO) and data -links in NSTI-GEO with the Chinese Meteorological Data Network and National Population and Health Scientific Data Sharing Platform.  相似文献   

11.
Global geospatial data from Earth observation: status and issues   总被引:1,自引:0,他引:1  
ABSTRACT

Data covering the whole of the surface of the Earth in a homogeneous and reliable manner has been accumulating over many years. This type of data became available from meteorological satellites from the 1960s and from Earth-observing satellites at a small scale from the early 1970s but has gradually accumulated at larger scales up to the present day when we now have data covering many environmental themes at large scales. These data have been used to generate information which is presented in the form of global data sets. This paper will give a brief introduction to the development of Earth observation and to the organisations and sensors which collect data and produce global geospatial data sets. Means of accessing global data sets will set out the types of data available that will be covered. Digital elevation models are discussed in a separate section because of their importance in georeferencing image data as well as their application to analysis of thematic data. The paper will also examine issues of availability, accuracy, validation and reliability and will look at future challenges.  相似文献   

12.
ABSTRACT

The development, integration, and distribution of the information and spatial data infrastructure (i.e. Digital Earth; DE) necessary to support the vision and goals of Future Earth (FE) will occur in a distributed fashion, in very diverse technological, institutional, socio-cultural, and economic contexts around the world. This complex context and ambitious goals require bringing to bear not only the best minds, but also the best science and technologies available. Free and Open Source Software for Geospatial Applications (FOSS4G) offers mature, capable and reliable software to contribute to the creation of this infrastructure. In this paper we point to a selected set of some of the most mature and reliable FOSS4G solutions that can be used to develop the functionality required as part of DE and FE. We provide examples of large-scale, sophisticated, mission-critical applications of each software to illustrate their power and capabilities in systems where they perform roles or functionality similar to the ones they could perform as part of DE and FE. We provide information and resources to assist the readers in carrying out their own assessments to select the best FOSS4G solutions for their particular contexts and system development needs.  相似文献   

13.
To tackle Big Data challenges such as Volume, Variety, and Velocity, the Earth Observations Data Cube (EODC) concept has emerged as a solution for lowering barriers and offering new possibilities to harness the information power of satellite EO data. However, installing, configuring, and managing an EODC instance is still difficult requiring specific knowledge and capabilities. Consequently, facilitating and automating the generation and provision of EODC given specific user’s requirements can be beneficial.In response to this issue, this paper presents the Data Cube on Demand (DCoD) approach, a proof-of-concept that aims at facilitating the generation and use of an EODC instance virtually anywhere in the World. Users are only required to specify an area of interest; select the types of sensors between Landsat 5-7-8 and Sentinel-2; choose a desired temporal frame; and provide their email address to receive notifications. Then automatically an empty ODC instance is instantiated and desired data are ingested.The proposed approach has been successfully tested in two sites in Bolivia and DRC in the field of environmental monitoring. It has lowered many complexity barriers of such a new technology; greatly facilitated the generation and use of the Data Cube technology; enhanced data sovereignty; and ultimately can help reaching large adoption and acceptance.  相似文献   

14.
ABSTRACT

As an important advanced technique in the field of Earth observations, Synthetic Aperture Radar (SAR) plays a key role in the study of global environmental change, resources exploration, disaster mitigation, urban environments, and even lunar exploration. However, studies on imaging, image processing, and Earth factor inversions have often been conducted independently for a long time, which significantly limits the application effectiveness of SAR remote sensing due to the lack of an overall integrated design scheme and integrated information processing. Focusing on this SAR application issue, this paper proposes and describes a new SAR data processing methodology – SAR data integrated processing (DIP) oriented on Earth environment factor inversions. The simple definition, typical integrated modes and overall implementation ideas are introduced. Finally, focusing on building information extraction (man-made targets) and sea ice classification (natural targets) applications, three SAR DIP methods and experiments are conducted. Improved results are obtained under the guidance of the SAR DIP framework. Therefore, the SAR DIP theoretical framework and methodology represent a new SAR science application mode that has the capability to improve the SAR remote sensing quantitative application level and promote the development of new theories and methodologies.  相似文献   

15.
Abstract

This paper investigates a multi-resolution digital Earth model called PYXIS, which was developed by PYXIS Innovation Inc. The PYXIS hexagonal grids employ an efficient hierarchical labeling scheme for addressing pixels. We provide a recursive definition of the PYXIS grids, a systematic approach to the labeling, an algorithm to add PYXIS labels, and a discussion of the discrete Fourier transform on PYXIS grids.  相似文献   

16.
The Google Earth terrain model could prove beneficial for extraction of positional data in the future. At present, only an aging independent benchmark study (Potere, D., 2008. Horizontal position accuracy of Google Earth's high-resolution imagery archive. Sensors, 8, 7973–7981) provides constraints on positional accuracy for Google Earth imagery. In this investigation, we compared virtually traced positions against high-precision (<1 m) field measurements along three stratigraphic unconformity sub-sections in the Big Bend region to determine current positional accuracy for the Google Earth terrain model. A horizontal position accuracy of 2.64 m RMSEr was determined for the Google Earth terrain model with mean offset distance being 6.95 m. A vertical position accuracy of 1.63 m RMSEz with mean offset distance of 2.66 m was also calculated for the terrain model. Results suggest data extracted from the Google Earth terrain model could plausibly be used in future studies. However, we urge caution in using Google Earth data due to limited information disclosures by developers.  相似文献   

17.
The effort and cost required to convert satellite Earth Observation (EO) data into meaningful geophysical variables has prevented the systematic analysis of all available observations. To overcome these problems, we utilise an integrated High Performance Computing and Data environment to rapidly process, restructure and analyse the Australian Landsat data archive. In this approach, the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations – the EO Data Cube. This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement. We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous, 25?m resolution observations. Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.  相似文献   

18.
"数字地球"战略及其制高点   总被引:40,自引:0,他引:40  
陈述彭 《遥感学报》1999,3(4):247-253
科学技术本来就是双刃剑。“数字地球”战略可能有助于全球信息资源的共享,全球化经济贸易的繁荣,同时也威胁着发展中国家的权益与安全。中国既要积极参与,更要独立自主。实现国家信息化建设是基础;应付“数字地球”的挑战是对策,不能混淆,不能等同。各国不是站在同一起跑线上出发的。必须扬长避短,发挥优势,及时占据制高点。  相似文献   

19.
Abstract

Digital Earth is an important field of information technology and a research frontier of geosciences in the 21st century. So far, the Grid computing technique is one of the best solutions for Digital Earth infrastructure. Digital Earth can only be realised through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organisationally dispersed. Earth observation (EO) includes information acquisition, processing and applications. Information acquisition provides a vast amount of spatial data for building the fabric resource infrastructure. Information processing means that spatial information processing middleware is used with large amounts of secure Grid computing resources for real-time processing of all kinds of spatial data. We are currently working on the development of core-middleware for EO data processing and applications for the Digital Earth Prototype System, which is available in the Institute of Remote Sensing Applications (IRSA), Chinese Academy of Sciences (CAS) The further results will be available soon.  相似文献   

20.
遥感与地球系统科学   总被引:1,自引:0,他引:1  
施建成  雷永荟 《遥感学报》2016,20(5):827-831
地球作为一个高度复杂的非线性系统,各圈层(大气、海洋、陆地、生物、冰雪圈、固体地球)尤其是人类活动等任何组成成份的变化,都会引起地球系统的变化。人类可持续发展面临的巨大科学挑战之一是认识人类赖以生存的、复杂变化的地球系统,认识地球系统如何变化及主要驱动因素,认识地球系统未来变化趋势及如何提高对全球变化的适应能力。卫星独特的全球覆盖和日尺度的观测改变了地球科学的研究方法,它强调所能探测到的多时空尺度上的物理动力过程,在全球范围应对气候变化、能源和环境挑战具有重要作用,揭开了地球系统多学科交叉的新纪元。以地球系统的视野,抓住驱动地球系统的关键循环过程(如能量、水、生物化学循环),是当前地球系统科学的发展趋势。地球系统科学(全球变化)研究需要长期稳定、准确性较高的卫星观测数据,以水循环为例,卫星遥感具备获取全球范围水循环关键参数能力,但是系统性综合观测能力不足,整体精确性受到综合化的可靠空间数据集的限制。目前中国正在积极研制发展新型水循环卫星WCOM(Water Cycle Observation Misssion),并寄希望以此为核心传感器发起全球分布式水循环观测星座系统,进一步提高中国在国际水循环观测与地球系统科学研究方面的话语权与领先能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号