首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

2.
ABSTRACT

Emanating from his remarkable characterization of long-term variability in geophysical records in the early 1950s, Hurst’s scientific legacy to hydrology and other disciplines is explored. A statistical explanation of the so-called “Hurst Phenomenon” did not emerge until 1968 when Mandelbrot and co-authors proposed fractional Gaussian noise based on the hypothesis of infinite memory. A vibrant hydrological literature ensued where alternative modelling representations were explored and debated, e.g. ARMA models, the Broken Line model, shifting mean models with no memory, FARIMA models, and Hurst-Kolmogorov dynamics, acknowledging a link with the work of Kolmogorov in 1940. The diffusion of Hurst’s work beyond hydrology is summarized by discipline and citations, showing that he arguably has the largest scientific footprint of any hydrologist in the last century. Its particular relevance to the modelling of long-term climatic variability in the era of climate change is discussed. Links to various long-term modes of variability in the climate system, driven by fluctuations in sea surface temperatures and ocean dynamics, are explored. Several issues related to the Hurst Phenomenon in hydrology remain as a challenge for future research.
Editor M. Acreman; Associate editor A. Carsteanu  相似文献   

3.
The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ° horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This “eddy-permitting” resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.  相似文献   

4.
Large-scale fields of soil moisture are forced by atmospheric precipitation and radiative forcing. When these forcing factors are themselves influenced by surface and soil moisture processes, the result is a nonlinear land-atmosphere system with inherent feedback mechanisms that may strongly modulate variability in climate. Given such feedbacks, simple randomness in the forcing factors may be manifested as a complex statistical signature in the surface hydrology. In this paper, we investigate the impacts of non-Gaussian and colored-noise on the probability distribution of soil moisture resulting from the statistical-dynamical land-atmosphere interaction model of Rodriguez-Iturbe et al. (1991). Persistence of hydroclimatologic anomalies as characterized by the correlation time scale of soil moisture is discussed.  相似文献   

5.
Large-scale fields of soil moisture are forced by atmospheric precipitation and radiative forcing. When these forcing factors are themselves influenced by surface and soil moisture processes, the result is a nonlinear land-atmosphere system with inherent feedback mechanisms that may strongly modulate variability in climate. Given such feedbacks, simple randomness in the forcing factors may be manifested as a complex statistical signature in the surface hydrology. In this paper, we investigate the impacts of non-Gaussian and colored-noise on the probability distribution of soil moisture resulting from the statistical-dynamical land-atmosphere interaction model of Rodriguez-Iturbe et al. (1991). Persistence of hydroclimatologic anomalies as characterized by the correlation time scale of soil moisture is discussed.  相似文献   

6.
The impact of the choice of high-resolution atmospheric forcing on ocean summertime circulation in the Gulf of Lions (GoL; Mediterranean Sea) is evaluated using three different datasets: AROME (2.5 km, 1 h), ALADIN (9.5 km, 3 h), and MM5 (9 km, 3 h). A short-term ocean simulation covering a 3-month summer period was performed on a 400-m configuration of the GoL. The main regional features of both wind and oceanic dynamics were well-reproduced by all three atmospheric models. Yet, at smaller scales and for specific hydrodynamic processes, some differences became apparent. Inertial oscillations and mesoscale variability were accentuated when high-resolution forcing was used. Sensitivity tests suggest a predominant role for spatial rather than temporal resolution of wind. The determinant influence of wind stress curl was evidenced, both in the representation of a mesoscale eddy structure and in the generation of a specific upwelling cell in the north-western part of the gulf.  相似文献   

7.
This paper examines the subtidal circulation and associated variability in the Gulf of St. Lawrence, the Scotian Shelf, and the Gulf of Maine (GSL-SS-GOM) in 1988–2004 based on results produced by a nested-grid shelf circulation model. The model has a fine-resolution child model (~ (1/12)°) embedded inside a coarse-resolution parent model (~ (1/4)°) of the northwest Atlantic. The combination of the semi-prognostic method and the spectral nudging method is used to reduce the model seasonal bias and drift. The child model reproduces the general features of the observed circulation and hydrography over the study region during the study period. The child model results demonstrate that the time-mean circulation in the GSL is affected by the time-mean atmospheric forcing and inflow through the Strait of Belle Isle. The temporal variability in atmospheric forcing affects the outflow through western Cabot Strait, which in turn affects the transport of the Nova Scotian Current and the gulf-wide cyclonic circulation in the GOM. The simulated seasonal variability of salinity in the top 30 m of the GSL-SS-GOM is mainly affected by the equatorward advection of low-salinity waters from the lower St. Lawrence Estuary to the GOM through the Scotian Shelf. The simulated intraseasonal variability of circulation in the GSL is affected by the variability in the estuarine circulation in response to the temporal variability in atmospheric forcing. On the Scotian Shelf, the intraseasonal variability is mainly driven by the variability of wind forcing and mesoscale and nonlinear dynamics over the shelf break and slope region. The interannual variability in the simulated temperature and salinity are spatially coherent in the intermediate waters in the GSL, which is caused partially by the local response to atmospheric variability and partially by variabilities over the southern Newfoundland Shelf that enter the GSL through the eastern Cabot Strait. By comparison, on the Scotian Shelf, the interannual variability of simulated circulation is affected by anomalies produced by the nonlinear dynamics which are advected equatorwards by the shelf break jet.  相似文献   

8.
We study pairwise interactions of elliptical quasi-geostrophic (QG) vortices as the limiting case of vanishingly thin uniform potential vorticity ellipsoids. In this limit, the product of the vertical extent of the ellipsoid and the potential vorticity within it is held fixed to a finite non-zero constant. Such elliptical “lenses” inherit the property that, in isolation, they steadily rotate without changing shape. Here, we use this property to extend both standard moment models and Hamiltonian ellipsoidal models to approximate the dynamical interaction of such elliptical lenses. By neglecting non-elliptical deformations, the simplified models reduce the dynamics to just four degrees of freedom per vortex. For simplicity, we focus on pairwise interactions between identical elliptical vortices initially separated in both the horizontal and vertical directions. The dynamics of the simplified models are compared with the full QG dynamics of the system, and show good agreement as expected for sufficiently distant lenses. The results reveal the existence of families of steadily rotating equilibria in the initial horizontal and vertical separation parameter space. For sufficiently large vertical separations, equilibria with varying shape exist for all horizontal separations. Below a critical vertical separation (stretched by the constant ratio of buoyancy to Coriolis frequencies N / f), comparable to the mean radius of either vortex, a gap opens in horizontal separation where no equilibria are possible. Solutions near the edge of this gap are unstable. In the full QG system, equilibria at the edge of the gap exhibit corners (infinite curvature) along their boundaries. Comparisons of the model results with the full nonlinear QG evolution show that the early stages of the instability are captured by the Hamiltonian elliptical model but not by the moment model that inaccurately estimates shorter-range interactions.  相似文献   

9.
A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.  相似文献   

10.
An unstructured mesh finite element model of the sea region off the west coast of Britain is used to examine the storm surge event of November 1977. This period is chosen because accurate meteorological data to drive the model and coastal observations for validation purposes are available. In addition, previous published results from a coarse-grid (resolution 7 km) finite difference model of the region and high-resolution (1 km) limited area (namely eastern Irish Sea) model are available for comparison purposes. To enable a “like with like” comparison to be made, the finite element model covers the same domain and has the same meteorological forcing as these earlier finite difference models. In addition, the mesh is based on an identical set of water depths. Calculations show that the finite element model can reproduce both the “external” and “internal” components of the surge in the region. This shows that the “far field” (external) component of the surge can accurately propagate through the irregular mesh, and the model responds accurately, without over- or under-damping, to local wind forcing. Calculations show significant temporal and spatial variability in the surge in close agreement with that found in earlier finite difference calculations. In addition, root mean square errors between computed and observed surge are comparable to those found in previous finite different calculations. The ability to vary the mesh in nearshore regions reveals appreciable small-scale variability that was not found in the previous finite difference solutions. However, the requirement to perform a “like with like” comparison using the same water depths means that the full potential of the unstructured grid model to improve resolution in the nearshore region is inhibited. This is clearly evident in the Mersey estuary region where a higher resolution unstructured mesh model, forced with uniform winds, had shown high topographic variability due to small-scale variations in topography that are not resolved here. Despite the lack of high resolution in the nearshore region, the model showed results that were consistent with the previous storm surge models of the region. Calculations suggest that to improve on these earlier results, a finer nearshore mesh is required based upon accurate nearshore topography.  相似文献   

11.
This study investigates transient eddy activity anomalies in the mid-latitude upper troposphere associated with intensity variability of the wintertime North Pacific subtropical front. Our results show that the meridional gradient of air temperature and baroclinic instability in the mid-latitude atmosphere become stronger as the subtropical front intensifies, and the mid-latitude westerly jet accelerates with barotropic structure. We further divide the mid-latitude atmospheric eddy activities into high-(2–7 days) and low-frequency(10–90 days) eddy activities according to their life periods. We find that, when the oceanic subtropical front intensifies, the high-frequency atmospheric eddy activity in the mid-latitudes strengthens while the low-frequency eddy activity weakens. The stronger high-frequency eddy activity tends to moderate the air temperature gradient and baroclinicity in the mid-latitudes. High-frequency eddy anomalies accelerate the westerly jet on the northern side and downstream of the westerly jet, and enhance the jet with equivalent barotropic structure. In contrast, the weaker low-frequency eddy activity has a negative contribution to zonal wind speed tendency and attenuates the zonal homogenization of the jet. The anomalous thermodynamic forcing of the low-frequency eddy activity helps maintain the meridional gradient of air temperature in the mid-troposphere.  相似文献   

12.
Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from a 20-year, high-resolution ocean model experiment for the Atlantic and Arctic Oceans. The atmospheric forcing is taken from the final 20 years of a twentieth-century control run with a coupled atmosphere–ocean general circulation model. The ocean model results from the regional ocean model are validated using observations of hydrography from repeat cruises in the Barents Sea. Validation is performed for average quantities and for probability distributions in space and time. The validation results reveal that, though the regional model is forced by a coupled global model that has a noticeable sea ice bias in the Barents Sea, the hydrography and its variability are reproduced with an encouraging quality. We attribute this improvement to the realistic transport of warm, salty waters into the Barents Sea in the regional model. These lateral fluxes in the ocean are severely underestimated by the global model. The added value with the regional model that we have documented here lends hope to advance the quality of oceanic climate change impact studies.  相似文献   

13.
A computational model describing the two-dimensional, turbulent mixing of a single jet of exhaust gas from aircraft engines with the ambient atmosphere is presented. The underlying assumptions and governing equations are examined and supplemented by a discussion of analytical solutions. As an application, the jet dynamics of a B747-400 aircraft engine in cruise and its dependence on key parameters is investigated in detail. The computer code for this dynamical model is computationally fast and can easily be coupled to complex chemical and microphysical models in order to perform comprehensive studies of atmospheric effects from aircraft exhaust emissions in the jet regime.  相似文献   

14.
This paper documents an experimental investigation in which a differentially-heated rotating annulus experiment was used to investigate the effects of topography on fluid flow under conditions similar to the atmospheric and oceanic circulation on Earth and other planets. In particular, the relationship between the effects of topographic resonance and the existence and mechanism for generation of low-frequency variability (LFV) were studied, motivated by outstanding questions in works such as Jin and Ghil (J. Atmos. Sci., 1990, 47) and Read and Risch (Geophys. Astrophys. Fluid Dyn., 2011, 105). Whilst employing sinusoidal wavenumber-3 topography a new regime was encountered within a region of stationary wavenumber-3 structural vacillation. Denoted as the “stationary-transition” regime, it featured periodic oscillations between a dominant stationary wavenumber-3 flow and axisymmetric or chaotic flow. Further investigation found that the “stationary-transition” regime appeared to be a near-resonant region where nonlinear topographic resonant instability led to a 23–42 “day” oscillatory behaviour. Within the regime, a Hopf bifurcation sequence was discovered, and the nonlinear instabilities were found to have terms in both wave-zonal flow and wave–wave interactions, including a notable resonant wave-triad. This report summarises the nature of the “stationary-transition” regime, and also makes comparisons with similar regimes of LFV found in other experimental studies, as well as intraseasonal oscillations in the atmosphere.  相似文献   

15.
本文首先指出北太平洋副热带中部模态水(简称中部模态水)的形成具有显著的“局地”特征,其形成海区在(165°E~160°W,38°N~42°N)区间. 海气通量分析表明单纯的外部大气强迫场(太阳短波辐射、净热通量和风应力旋度)不能解释中部模态水形成海区的“局地”性;进一步对上层海洋层结季节变化特征的分析发现秋季(9~10月)在北太平洋中部上层海洋(<75 m)(165°E~160°W,38°N~42°N)区间存在特殊的浮力频率低值区——层结稳定性“豁口”. 该层结稳定性“豁口”作为“预条件(Precondition Mechanism)”机制对中部模态水形成的“局地”特征给出了合理的解释. 在上述研究的基础上,基于一个上层海洋混合层热平衡方程,通过诊断分析揭示该层结稳定性“豁口”是由海表热力强迫、垂向挟卷、Ekman平流和地转平流效应共同导致的,“豁口”东、西边界的确定直接或间接地取决于海表热力强迫、Ekman冷平流和地转暖平流的纬向分布差异.  相似文献   

16.
 Aspects of open ocean deep convection variability are explored with a two-box model. In order to place the model in a region of parameter space relevant to the real ocean, it is fitted to observational data from the Labrador Sea. A systematic fit to OWS Bravo data allows us to determine the model parameters and to locate the position of the Labrador Sea on a stability diagram. The model suggests that the Labrador Sea is in a bistable regime where winter convection can be either “on” or “off ”, with both these possibilities being stable climate states. When shifting the surface buoyancy forcing slightly to warmer or fresher conditions, the only steady solution is one without winter convection.  We then introduce short-term variability by adding a noise term to the surface temperature forcing, turning the box model into a stochastic climate model. The surface forcing anomalies generated in this way induce jumps between the two model states. These state transitions occur on the interannual to decadal time scale. Changing the average surface forcing towards more buoyant conditions lowers the frequency of convection. However, convection becomes more frequent with stronger variability in the surface forcing. As part of the natural variability, there is a non-negligible probability for decadal interruptions of convection. The results highlight the role of surface forcing variability for the persistence of convection in the ocean.  相似文献   

17.
The dynamics of a stratified fluid contained in a rotating rectangular box is described in terms of the evolution of the lowest moments of its density and momentum fields. The first moment of the density field also gives the position of the fluids centre-of-mass. The resulting low-order model allows for fast assessment both of adopted parameterisations, as well as of particular values of parameters. In the ideal fluid limit (neglect of viscous and diffusive effects), in the absence of wind, the equations have a Hamiltonian structure that is integrable (non-integrable) in the absence (presence) of differential heating. In a non-rotating convective regime, dynamically rich behaviour and strong dependence on the single (lumped) parameter are established. For small values of this parameter, in a self-similar regime, further reduction to an explicit map is discussed in an Appendix. Introducing rotation in a nearly geostrophic regime leads through a Hopf bifurcation to a limit cycle, and under the influence of wind and salt to multiple equilibria and chaos, respectively.  相似文献   

18.
The use of a one-dimensional interdisciplinary numerical model of the coastal ocean as a tool contributing to the formulation of ecosystem-based management (EBM) is explored. The focus is on the definition of an experimental design based on ensemble simulations, integrating variability linked to scenarios (characterised by changes in the system forcing) and to the concurrent variation of selected, and poorly constrained, model parameters. The modelling system used was previously specifically designed for the use in “data-rich” areas, so that horizontal dynamics can be resolved by a diagnostic approach and external inputs can be parameterised by nudging schemes properly calibrated. Ensembles determined by changes in the simulated environmental (physical and biogeochemical) dynamics, under joint forcing and parameterisation variations, highlight the uncertainties associated to the application of specific scenarios that are relevant to EBM, providing an assessment of the reliability of the predicted changes. The work has been carried out by implementing the coupled modelling system BFM-POM1D in an area of Gulf of Trieste (northern Adriatic Sea), considered homogeneous from the point of view of hydrological properties, and forcing it by changing climatic (warming) and anthropogenic (reduction of the land-based nutrient input) pressure. Model parameters affected by considerable uncertainties (due to the lack of relevant observations) were varied jointly with the scenarios of change. The resulting large set of ensemble simulations provided a general estimation of the model uncertainties related to the joint variation of pressures and model parameters. The information of the model result variability aimed at conveying efficiently and comprehensibly the information on the uncertainties/reliability of the model results to non-technical EBM planners and stakeholders, in order to have the model-based information effectively contributing to EBM.  相似文献   

19.
For a proper understanding of flow patterns in curved tidal channels, quantification of contributions from individual physical mechanisms is essential. We study quantitatively how such contributions are affected by cross-channel bathymetry and three alternative eddy viscosity parameterisations. Two models are presented for this purpose, both describing flow in curved but otherwise prismatic channels with an (almost) arbitrary transverse bathymetry. One is a numerical model based on the full three-dimensional shallow water equations. Special feature of this diagnostic model is that assumptions regarding the relative importance of particular physical mechanisms can be incorporated in the computations by switching corresponding terms in the model equations on or off. We also present an idealized model that provides semi-analytical approximate solutions of the shallow water equations for all three considered alternative eddy viscosity parameterisations. It forms an aid in explaining and theorising about results obtained with the numerical model. Observations regarding Chesapeake Bay serve as a reference case for the present study. We find that the relative importance of both along-channel advective forcing and transverse diffusive forcing depends on local characteristics of the cross-sectional bottom profile rather than global ones. In our reference case, tide-residual along-channel flow induced by these forcings is not small compared to the total tidal residual. Building on this observation, we present an indicative test to judge whether advective processes should be included in leading order in modelling tide-dominated estuarine flow. Furthermore, depending on the applied eddy viscosity parameterisation (uniformly or parabolically distributed over the vertical), we find qualitatively different spatial patterns for the along-channel advective forcing.  相似文献   

20.
Climate models are increasingly being used to force dynamical wind wave models in order to assess the potential climate change-driven variations in wave climate. In this study, an ensemble of wave model simulations have been used to assess the ability of climate model winds to reproduce the present-day (1981–2000) mean wave climate and its seasonal variability for the southeast coast of Australia. Surface wind forcing was obtained from three dynamically downscaled Coupled Model Intercomparison Project (CMIP-3) global climate model (GCM) simulations (CSIRO Mk3.5, GFDLcm2.0 and GFDLcm2.1). The downscaling was performed using CSIRO’s cubic conformal atmospheric model (CCAM) over the Australian region at approximately 60-km resolution. The wind climates derived from the CCAM downscaled GCMs were assessed against observations (QuikSCAT and NCEP Re-analysis 2 (NRA-2) reanalyses) over the 1981–2000 period and were found to exhibit both bias in mean wind conditions (climate bias) as well as bias in the variance of wind conditions (variability bias). Comparison of the modelled wave climate with over 20 years of wave data from six wave buoys in the study area indicates that direct forcing of the wave models with uncorrected CCAM winds result in suboptimal wave hindcast. CCAM winds were subsequently adjusted for climate and variability bias using a bivariate quantile adjustment which corrects both directional wind components to align in distribution to the NRA-2 winds. Forcing of the wave models with bias-adjusted winds leads to a significant improvement of the hindcast mean annual wave climate and its seasonal variability. However, bias adjustment of the CCAM winds does not improve the ability of the model to reproduce the storm wave climate. This is likely due to a combination of storm systems tracking too quickly through the wave generation zone and the performance of the NRA-2 winds used as a benchmark in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号