首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Tokutaro Hatori 《GeoJournal》1996,38(3):313-319
The regional characteristics of tsunami magnitudes in the SE Asia region are discussed in relation to earthquake magnitudes during the period from 1960 to 1994. Tsunami magnitudes on the Imamura-Iida scale are investigated by the author's method (Hatori 1979, 1986) using the data of inundation heights near the source area and tide-gauge records observed in Japan. The magnitude values of the Taiwan tsunamis showed relatively to be small. On the contrary, the magnitudes of tsunamis in the vicinities of the Philippines and Indonesia exceed more than 1–2 grade (tsunami heights: 2–5 times) compared to earthquakes with similar size on the circum-Pacific zone. The relation between tsunami magnitude, m, and earthquake magnitude, M s, is expressed as m = 2.66 M s– 17.5 for these regions. For example, the magnitudes for the 1976 Mindanao tsunami (M s= 7.8, 3702 deaths) and the 1992 Flores tsunami (M s= 7.5, 1713 deaths) were determined to be m = 3 and m = 2.5, respectively. The focal depth of tsunamigenic earthquakes is shallower thand< 36 km, and the detectively of tsunamis is small for deep earthquakes being d > 40 km. For future tsunamis, it is indispensable to take precautions against shallow earthquakes having the magnitudes M s> 6.5.  相似文献   

2.
Magnitude conversion problem for the Turkish earthquake data   总被引:1,自引:0,他引:1  
Earthquake catalogues which form the main input in seismic hazard analysis generally report earthquake magnitudes in different scales. Magnitudes reported in different scales have to be converted to a common scale while compiling a seismic data base to be utilized in seismic hazard analysis. This study aims at developing empirical relationships to convert earthquake magnitudes reported in different scales, namely, surface wave magnitude, M S, local magnitude, M L, body wave magnitude, m b and duration magnitude, M d, to the moment magnitude (M w). For this purpose, an earthquake data catalogue is compiled from domestic and international data bases for the earthquakes occurred in Turkey. The earthquake reporting differences of various data sources are assessed. Conversion relationships are established between the same earthquake magnitude scale of different data sources and different earthquake magnitude scales. Appropriate statistical methods are employed iteratively, considering the random errors both in the independent and dependent variables. The results are found to be sensitive to the choice of the analysis methods.  相似文献   

3.
Using 4.0 and greater magnitude earthquakes which occurred between 1 January 1900 and 31 Dec 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on the probabilistic and statistical methods. According to the earthquake zonation map, Sinop is divided into first, second, third and fourth-degree earthquake regions. Our study area covered the coordinates between 40.66°– 42.82°N and 32.20°– 36.55°E. The different magnitudes of the earthquakes during the last 108 years recorded on varied scales were converted to a common scale (Mw). The earthquake catalog was then recompiled to evaluate the potential seismic sources in the aforesaid province. Using the attenuation relationships given by Boore et al. (1997) and Kalkan and Gülkan (2004), the largest ground accelerations corresponding to a recurrence period of 475 years are found to be 0.14 g for bedrock at the central district. Comparing the seismic hazard curves, we show the spatial variations of seismic hazard potential in this province, enumerating the recurrence period in the order of 475 years.  相似文献   

4.
The characteristics of seismicity prior to the series of eight very strong earthquakes (M w = 7.0–9.0) in Northeast Japan are discussed. Ring seismicity structures that appeared prior to all eight events in two depth ranges of 0–33 and 34–70 km are identified. The epicenters of the main shocks were located near areas of crossing or touching of shallow and deep rings. It was shown that the sizes of shallow rings and threshold magnitudes corresponding to seismicity rings grow with the energy of the main shocks. It was noted that the prognosis with respect to the place and magnitude of the catastrophic earthquake on March 11, 2011, had been made before it based on the data obtained prior to July 1, 2009. Use of the new data obtained prior to March 10, 2011, enabled us to specify this prognosis significantly. We obtained correlation dependences of threshold magnitudes on the energy of the main shocks (with a high correlation coefficients). It was shown that the duration of the period for seismicity rings to emerge in the considered region nearly did not depend on magnitude. The nature of annular structures and the possibility of application of their parameters for prognosis of strong earthquakes were discussed.  相似文献   

5.
The record of historic earthquakes in lake sediments of Central Switzerland   总被引:1,自引:0,他引:1  
Deformation structures in lake sediments in Central Switzerland can be attributed to strong historic earthquakes. The type and spatial distribution of the deformation structures reflect the historically documented macroseismic intensities thus providing a useful calibration tool for paleoseismic investigations in prehistoric lake sediments.The Swiss historical earthquake catalogue shows four moderate to strong earthquakes with moment magnitudes of Mw=5.7 to Mw=6.9 and epicentral intensities of I0=VII to I0=IX that affected the area of Central Switzerland during the last 1000 years. These are the 1964 Alpnach, 1774 Altdorf, 1601 Unterwalden, and 1356 Basel earthquakes. In order to understand the effect of these earthquakes on lacustrine sediments, four lakes in Central Switzerland (Sarner See, Lungerer See, Baldegger See, and Seelisberg Seeli) were investigated using high-resolution seismic data and sediment cores. The sediments consist of organic- and carbonate-rich clayey to sandy silts that display fine bedding on the centimeter to millimeter scale. The sediments are dated by historic climate and environmental records, 137Cs activity, and radiocarbon ages. Deformation structures occur within distinct zones and include large-scale slumps and rockfalls, as well as small-scale features like disturbed and contorted lamination and liquefaction structures. These deformations are attributed to three of the abovementioned earthquakes. The spatial distribution of deformation structures in the different lakes clearly reflects the historical macroseismic dataset: Lake sediments are only affected if they are situated within an area that underwent groundshaking not smaller than intensity VI to VII. We estimate earthquake size by relating the epicentral distance of the farthest liquefaction structure to earthquake magnitude. This relationship is in agreement with earthquake size estimations based on the historical dataset.  相似文献   

6.
Since 1976 a number of analogue and digital seismographs, which record high frequency seismic waves in the range 4 to 20 Hz, have been installed in Victoria. These enable the detection and location of microearthquakes with Richter magnitude Ml down to less than zero. Because there are many more smaller than larger earthquakes, about 250 events are now being located in Victoria each year, compared with about 25 per year between 1960 and 1975, and an average of two per year between 1840 and 1959. Despite an uneven statewide seismograph coverage, the new instruments and new lithospheric models have led to substantial improvements in earthquake location accuracy. All Victorian earthquakes with reliable depth determinations have been found to lie within the crust, most at a depth of less than 18 km. Some very small but shallow microearthquakes have been felt or heard. The isoseismal map for such an event (of magnitude Ml 1.3) which occurred at Preston during July 1976, is given.

The greater range of magnitudes now recorded permits more reliable estimates of seismicity. On average, the recurrence of earthquakes in Victoria is represented by: log10 (P) = 0.92ML —2.40, where P is the return period of an earthquake with magnitude greater than Ml in an area of 100 km square. It is suggested that attenuation of seismic wave amplitudes with distance is quite high in Victoria.  相似文献   

7.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

8.
An instrumental earthquake catalog covering the time span between 1903 and 2007 and for the area bounded by 32°N–38°N and 35°E–43°E has been compiled in this research. The catalog has a magnitude of completeness (M c ) with 3.5. Least squares and statistical probability Gumbel’s techniques with different approaches have been applied on the instrumental events in order to assess the average recurrence time periods for different earthquake magnitudes. The constants a and b of Gutenberg-Richter and the average recurrence times have been computed firstly for the study area and secondly for the central and northern parts of Dead Sea fault system. The different statistical computations using Knopoff and Kagan formalism are generally in agreement and suggest an average recurrence time of 203 years for an earthquake of magnitude 7 for the region. The occurrence of large well-documented historical earthquakes in Lebanon and western Syria, the existence of active fault segments, the absence of large earthquakes during the study period, the increasing number of the low-magnitude earthquakes, and the continued accumulation of the strain since 1900 indicate therefore the probability of an earthquake occurrence of a large magnitude. This should be permanently taken into consideration in seismic hazard assessment on the local and regional scales.  相似文献   

9.
The devastating 1999 Marmara and Düzce earthquakes led to a significant increase in the earthquake studies in Turkey in geological, engineering and financial aspects. Extreme Value Theory (EVT) has a range of applications from stock market changes to natural disasters like floods and hurricanes. Here EVT is fitted to the ordinary and earthquake reinsurance claims of Turkey.  相似文献   

10.
Strong tectonic earthquakes within the crust always occur on already existing faults, and they have the property of a shear rupture. Such earthquakes with surface-wave magnitudes M < 7 obviously have a geometric similarity. Because of this similarity and the validity of the Gutenberg and Richter's energy—magnitude relation, the expression M = 2 log10 L + const., with L = focal length, is valid.The expression LmaxL* for the maximum focal length, is also valid if L* is the length of the rectilinear extent of the seismic line on which the maximum earthquake occurs. The bounds of L* may be given by sharp bends and/or by traversing deep faults. Thus the maximum imaginable earthquake on a seismic line with the length L* has the magnitude Mmax = 2 log10 L* + const.For the investigated region — the Alps and adjacent areas — from the data of recent and historical strong earthquakes, it follows that Mmax = 2 log10 L* + 1.7, if L* is measured in kilometres. These limiting values lie in the centre-field of the magnitude range for maximum earthquakes, published by Shebalin in 1970. By the aid of this equation it is also possible to assess the upper limiting value of the accompanying maximum scale intensity.  相似文献   

11.
广东省及邻区新生代以来构造运动与地震活动分区的研究   总被引:3,自引:0,他引:3  
综合分析多年来地震地质调查资料,将广东省及部分邻区划分为具不同构造活动特点的6个区,分别论述、分析这些区内新生代以来的断裂构造、火山喷发、第四纪沉积及地震活动等。结果认为,由断层样品热释光测定确定的断层最近期活动年龄主要是在中更新世和晚更新世,沿海地带主要为晚更新世和全新世。新生代以来构造具继承性活动的地区是地震最活动地区,如琼雷地区。同时,由于历史上发生过强震,地震后至今具较大速率下沉地区,在今后相当长时间内可能是不易发生强震地区,如琼北东部和南澎-南澳地区;Ms6级地震将主要发生在晚更新世以来的新生盆地,如潮汕盆地和近岸海湾地区;Ms5级地震在一定条件下,几乎可能发生在省内的任何地区。  相似文献   

12.
We conducted a study of the spatial distributions of seismicity and earthquake hazard parameters for Turkey and the adjacent areas, applying the maximum likelihood method. The procedure allows for the use of either historical or instrumental data, or even a combination of the two. By using this method, we can estimate the earthquake hazard parameters, which include the maximum regional magnitude max, the activity rate of seismic events and the well-known value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. These three parameters are determined simultaneously using an iterative scheme. The uncertainty in the determination of the magnitudes was also taken into consideration. The return periods (RP) of earthquakes with a magnitude M ≥ m are also evaluated. The whole examined area is divided into 24 seismic regions based on their seismotectonic regime. The homogeneity of the magnitudes is an essential factor in such studies. In order to achieve homogeneity of the magnitudes, formulas that convert any magnitude to an MS-surface scale are developed. New completeness cutoffs and their corresponding time intervals are also assessed for each of the 24 seismic regions. Each of the obtained parameters is distributed into its respective seismic region, allowing for an analysis of the localized seismicity parameters and a representation of their regional variation on a map. The earthquake hazard level is also calculated as a function of the form Θ = (max,RP6.0), and a relative hazard scale (defined as the index K) is defined for each seismic region. The investigated regions are then classified into five groups using these parameters. This classification is useful for theoretical and practical reasons and provides a picture of quantitative seismicity. An attempt is then made to relate these values to the local tectonics.  相似文献   

13.
A probabilistic seismic hazard assessment is developed here using maximum credible earthquake magnitude statistics and earthquake perceptibility hazard. Earthquake perceptibility hazard is defined as the probability a site perceives ground shaking equal to or greater than a selected ground motion level X, resulting from an earthquake of magnitude M, and develops estimates for the most perceptible earthquake magnitude, M P(max). Realistic and usable maximum magnitude statistics are obtained from both whole process and part process statistical recurrence models. These approaches are extended to develop relationships between perceptible earthquake magnitude hazard and maximum magnitude recurrence models that are governed by asymptotic and finite return period properties, respectively. Integrated perceptibility curves illustrating the probability of a specific level of perceptible ground motion due to all earthquakes over the magnitude range extending from ?∞ to a magnitude M i are then developed from reviewing site-specific magnitude perceptibility. These lead on to achieving site-specific annual probability of exceedance hazard curves for the example cities of Sofia and Thessaloniki for both horizontal ground acceleration and ground velocity. Both the maximum credible earthquake magnitude M 3 and the most perceptible earthquake magnitude M P(max) are of importance to the earthquake engineer when approaching anti-seismic building design. Both forms of hazard are illustrated using contoured hazard maps for the region bounded by 39°–45°N, 19°–29°E. Patterns are observed for these magnitude hazard estimates—especially M P(max) specific to horizontal ground acceleration and horizontal ground velocity—and compared to inferred patterns of crustal deformation across the region. The full geographic region considered is estimated to be subject to a maximum credible earthquake magnitude M 3—estimated using cumulative seismic moment release statistics—of 7.53 M w, calculated from the full content of the adopted earthquake catalogue, while Bulgaria’s capital, Sofia, is estimated a comparable value of 7.36 M w. Sofia is also forecast most perceptible earthquake magnitudes for the lowest levels considered for horizontal ground acceleration of M PA(50) = 7.20 M w and horizontal ground velocity of M PV(5) = 7.23 M w for a specimen focal depth of 15 km.  相似文献   

14.
The results of detailed seismological observations with bottom recording systems carried out in 2004 and 2006 near the Dagestan coast of the Middle Caspian are considered. The records of more than 550 micro- and weak earthquakes with ML = 0.1–4.7 (MLH = ?0.7 to 4.3) were obtained during 165 days of recording; a fifth of these earthquakes occurred in the upper mantle at a depth of 50–200 km. Over the entire period of instrumental recording since the 1930s, only 10 mantle earthquakes with MLH = 3.5?6.3 have been recorded by on-land systems. The highest density of earthquake epicenters with source depths down to 50 km is established on the Middle Caspian coast between Derbent and Izberbash and in the adjacent water area. The mantle earthquakes with hypocenters at a depth of 60–80 km cluster beneath the western wall of the Derbent Basin, whereas deeper hypocenters are located beneath both the wall of this basin and the Middle Caspian coast. The sporadic mantle earthquakes recorded in 2004 (about 30 shocks), determined by a network of systems with a small aperture, depicted a zone plunging beneath the Greater Caucasus with indications of a peculiar “subduction” of the Scythian Plate beneath the Caucasus. Subsequent observations based on a more extensive network were carried out in 2006. They substantially changed the pattern of mantle earthquake hypocenters. According to this evidence, the sources of mantle earthquakes make up a dispersed cloud extended in the vertical direction beneath the Middle Caspian coast and water area, which may be regarded as a relic of tectonic activity of a bygone tectonic epoch. A comprehensive tectonic interpretation of the detected seismological phenomenon is given.  相似文献   

15.
Richter magnitudes ML have been determined for 718 well recorded South Australian earthquakes by converting amplitudes derived from existing seismograph stations to equivalent Wood‐Anderson amplitudes, and substituting in Richter's formula (Richter 1935), derived for such instruments and for Southern California. The magnitudes so determined were generally found to increase with distance A for each earthquake, at least for events at distances below a few hundred kilometres, reflecting lower attenuation of crustal S waves in South Australia.

A distance‐dependent correction, which must be subtracted from Richter magnitudes, was obtained by integrating the weighted least squares fit to the (A, dML/dA) data. The correction increases to one‐half of a magnitude unit at a distance of 400 km, and thereafter decreases smoothly to 0.3 units at 600 km. Station corrections, due to local geological variations, have also been determined. Values range from ‐0.6 to + 0.2 units.

Empirical relationships between the revised ML scale and the previously used local magnitude scales mL and MN (White 1968; Stewart 1975) and the body wave magnitude scale mb have been established. The latter yields results consistent with the well known Gutenberg‐Richter formula (Richter 1958)  相似文献   

16.
One of the most critical lessons of the recent earthquakes is the need for seismic planning for lifelines, with appropriate supplies and back up systems for emergency repair and restoration. Seismic planning, however requires physical loss estimations before the earthquakes occur. Buried pipeline damage correlations are critical part of loss estimation procedures applied to lifelines for future earthquakes. We review the existing pipeline damage relationships only for ground shaking (transient ground deformations) in the light of recent developments and evaluate them with Denizli City, Turkey water supply system. Eight scenario earthquakes with four different earthquake magnitudes between M6 and M7 caused by two different fault ruptures (Pamukkale and Karakova-Akhan Faults) were used. Analyses were performed by using Geographical Information Systems (GIS). This high number of different scenario earthquakes made it possible to compare the pipeline damage relationships at different ground shaking levels. Pipeline damage estimations for Denizli City were calculated for each damage relationship and earthquake scenario. Relative effects of damage relationships and scenario earthquakes on the results were compared and discussed. The results were presented separately for brittle, ductile, and all pipelines. It was shown that the variation in ductile pipeline damage estimations by various relationships was higher than the variation in brittle pipeline damage estimations for a particular scenario earthquake.  相似文献   

17.
Routine determination of network magnitudes by means of the Eurasian homogeneous magnitude system (HMS) is described and tested on a selection of recent shallow earthquakes. The HMS earthquake magnitudes appear to be more accurate and more reliable than the conventional earthquake magnitudes used in the present seismological practice. A preliminary investigation of correlations between magnitudes determined from different wave types shows a possible dependence of the correlation on the type of focal mechanism of earthquakes.  相似文献   

18.
《Earth》2008,88(3-4):94-112
It is generally found that the relative frequencies of occurrence of earthquakes of different magnitudes in seismogenic zones have a power law distribution. For a long-term dataset, the overall slope of this logarithmically transformed distribution is usually indicated by a best-fit straight line and expressed as a b-value. This slope is stable and normally lies between 0.8 and 1.2, the actual value depending on the region examined, and the threshold selected for data completeness. The linearity of the distribution can be used to make statistical inferences about the potential for larger events over the long run, and with appropriate reservations, may even be extrapolated to magnitudes that are beyond recent experience. We suggest the same information can also be viewed over shorter intervals in terms of an empirical piecewise distribution, with relative frequencies of occurrence at adjacent magnitude steps controlling the local slope of the distribution. An emergence, through time, of an excess number of lower magnitude earthquakes causes temporal changes to appear in the low-end piecewise gradients of this distribution. A marked excursion away from an overall uniform trend for the particular zone may be indicative of an imminent, larger event. On two separate occasions, in 1982 and 1997, such temporal variations were seen in the magnitude distributions of sequences of events near Tobago, West Indies, and used to anticipate subsequent damaging mainshocks. The recognition of temporal departures from overall linearity of the magnitude–frequency relation, in a suitable dataset, may thus provide an evidential element that can contribute to earthquake forecasting. This phenomenological approach was used in the analysis of the NEIC global dataset of earthquakes of magnitude 6.1 and bigger, for the period 1973–2003, to explore its wider applicability. Trends in the piecewise gradients of the global data were interpreted as pointing to an imminent great earthquake, perhaps exceeding magnitude 8.5; such an event did occur shortly afterwards in the form of the great Sumatran earthquake of 2004/12/26. Following that event, global magnitude production continued to exhibit sharp imbalances in the lower magnitude bins, indicating that another similar event was likely. The second Sumatran earthquake on 2005/03/28 satisfied that projection. Since that time, a magnitude production imbalance persists in the global dataset suggesting the system could be poised to output an earthquake (or earthquakes) in the magnitude range 8.6–9.0 or even greater. This contribution describes the piecewise gradient approach and examines its application to global earthquake data.  相似文献   

19.

The definition of the Richter Ml magnitude scale is in terms of seismic wave horizontal components recorded on Wood‐Anderson seismographs. However, at many seismograph sites only the vertical component is available, and at sedimentary sites horizontal components are usually significantly amplified, causing complications in the assignment of a magnitude to an earthquake. Because each earthquake can be recorded at a different subset of sites, each subset having a different combination of site amplifications, the assignment of a magnitude is dependent upon the seismograph site combination that records a particular earthquake. Although there is some amplification of the vertical component at sedimentary foundation sites, it is shown that a reduced spread of values of Ml magnitude, consistent with low amplification (bedrock) site magnitudes, can be achieved using the vertical component to compute the magnitude and adding 0.2 to adjust to the Ml magnitude scale (defined in terms of the horizontal components). This presupposes that the sites used by Richter were on bedrock; however, even if this is incorrect, it appears to be a necessary precondition for the world‐wide unification of the Richter scale along with defining the true gain of Wood‐Anderson seismographs rather than accepting the design gain of 2800. Site corrections would be smaller than those established using the horizontal components. Taking into account the use of only the vertical component in the calculation of Ml and including the 0.2 adjustment to the equivalent horizontal component derived magnitude, the expression for the calculation of magnitudes in the Victoria region becomes:

Ml = logAz ‐ logSz + 0.9 + logR + 0.0056Re‐0.0013R

where Az is the equivalent Wood‐Anderson seismograph displacement amplitude, Sz is the site amplification (vertical component) and R is the hypocentral distance.  相似文献   

20.
The aim of the present work is to compile and update a catalogue of the instrumentally recorded earthquakes in Egypt, with uniform and homogeneous source parameters as required for the analysis of seismicity and seismic hazard assessment. This in turn requires a detailed analysis and comparison of the properties of different available sources, including the distribution of events with time, the magnitude completeness, and the scaling relations between different kinds of magnitude reported by different agencies. The observational data cover the time interval 1900–2004 and an area between 22°–33.5° N and 25°–36° E. The linear regressions between various magnitude types have been evaluated for different magnitude ranges. Using the best linear relationship determined for each available pair of magnitudes, as well as those identified between the magnitudes and the seismic moment, we convert the different magnitude types into moment magnitudes M W, through a multi-step conversion process. Analysis of the catalogue completeness, based on the M W thus estimated, allows us to identify two different time intervals with homogeneous properties. The first one (1900–1984) appears to be complete for M W ≥ 4.5, while the second one (1985–2004) can be considered complete for magnitudes M W ≥ 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号