首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
2.
The characteristics of spatial and temporal distribution of tropospheric NO2 column density concen-tration over China are presented,on the basis of measurements from the satellite instruments GOME and SCIAMACHY.From these observations,monthly averaged tropospheric NO2 variations are deter-mined for the period of 1997 to 2006.The trend and seasonal cycle are also investigated.The possible source of tropospheric NO2 over megacity area is discussed in this paper.The results show a large growth of tropospheric NO2 over eastern China,especially above the industrial areas with a fast eco-nomical growth,such as,Yangtze Rive Delta region and Pearl River Delta region because of the prominent anthropogenic activity.There is a rapid increase of tropospheric NO2 over megacities in China.For instance,Shanghai had a linear significant increase in NO2 columns of ~20% per year(ref-erence year 1997) in the period of 1997―2006,which is the rapidest increase among all the selected cities.The seasonal pattern of the NO2 concentration shows a difference between the east and west in China.In the eastern part of China,an expected winter maximum in seasonal cycle is found because of the prominent anthropogenic activity and meteorological conditions.In the western part this cycle shows a NO2 maximum in summer time,which is attributed to natural emissions,especially soil emissions and lightning.A quickly increasing vehicle population may contribute to the increase of tropo-spheric NO2 over megacities in China for the remarkable correlation for vehicle population with tropospheric NO2.  相似文献   

3.
 The 1998 eruption of Volcan Cerro Azul, Isla Isabela, Galápagos Islands, was observed in near real-time by the Geostationary Operational Environmental Satellite-8 (GOES-8) weather satellite. Due to the remote location of the eruption site, 3.9-μm radiance values derived from GOES band 2 provide the best timing of the start and termination of the eruption, which occurred on 15 Sept. and 21 Oct., respectively. Throughout the 36-day long eruption, a total of 1335 thermal infrared images were collected, of which 851 were cloud-free and permitted the thermal anomaly to be detected. A detailed chronology including 77 separate events was assembled from the GOES data and field observations. Numerous attributes of the eruption were observed from the GOES data, including the sizes and dispersal of seven eruption plumes and the occurrence and timing of intra-caldera effusive activity. The growth of a lava flow on the SE flank, the formation of smoke and volcanic haze from the flank vent, and burning of vegetation caused by lava flows entering vegetated areas were monitored both on the ground and with the satellite data. In most cases GOES images were processed as they were received every 30 min and were then distributed over the Internet within minutes of reception. These data provided timely high-temporal information to field parties as well as enabled the documentation of the eruption. The GOES observations of Cerro Azul serve as a further example of the way in which the remote sensing community and field volcanologists can collaborate during future eruptions, and permit the temporal and spatial resolution requirements for future satellites systems to be better defined. Received: 27 April 1999 / Accepted: 21 February 2000  相似文献   

4.
According to the features of spatial spectrum of the dynamic ocean topography (DOT),wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96),combining an altimetry-derived mean sea surface height model (KMSS04),two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter,and the DOT models asso-ciated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global,Kuroshio and equatorial Pacific regions with that from oceanography,and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale,the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography,which indicates that ocean currents detected by satellite measurement have reached relatively high precision.  相似文献   

5.
We investigated the eruptive episodes that occurred at Etna volcano on 15 November 2011 and 18 March 2012 using different types of data. We present novel data from two recently installed strainmeters that recorded unique signals during the lava fountain phases of these events. The strainmeter data, integrated with those recorded by the magnetic network, and with satellite and ground thermal data, allowed us to follow the path of a gas-rich magma batch from the source inside the volcano to the surface and atmosphere. The amplitude ratio of the volumetric strain changes constrained the storage depth of the magma feeding the lava fountains above 1.5 km below sea level. Magnetic data revealed an attempted shallow lateral intrusion, whereas ground and satellite thermal data furnished a quantification of the total erupted volumes of ~2.2?×?106?m3 for the 15 November event and ~3.0?×?106?m3 for the 18 March event. Despite different durations of the explosive and effusive phases of the two lava fountain events, the total erupted volume was quite similar, suggesting the emptying of a shallow storage system displaying a steady behaviour.  相似文献   

6.
This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor δD data retrieved from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY) observations.The results show that water vapor δD values on both annual and seasonal time-scales broadly exhibit a continental effect,with values largely decreasing northwestward from coastal lowlands to high-elevation mountainous regions.However,region-specific analysis reveals spatially distinct patterns of water vapor δD between seasons.In the monsoon domain(e.g.,China south of 35°N),depletion in D in the summer and fall seasons is closely tied to monsoon moisture sources(the Indian and Pacific oceans) and subsequent amount effect,but higher δD values in winter and spring are a result of isotopically-enriched continental-sourced moisture proceeded by less rainout.In contrast,farther inland in China(non-monsoon domain),moisture is derived overwhelmingly from the dry continental air masses and local evaporation,and δD values are largely controlled by the temperature effect,exhibiting a seasonality with isotopically enriched summer and depleted winter/spring.The observation that the spatial pattern of water vapor δD is the opposite to that of precipitation δD in the summer season also suggests that partial evaporation of falling raindrops is a key driver of water vapor isotope in the non-monsoon domain.This study highlights the importance of non-Rayleigh factors in governing water vapor isotope,and provides constraints on precipitation isotope interpretation and modern isotope hydrological processes over China.  相似文献   

7.
Thermal history of Rhea from the beginning of accretion is investigated. We developed a numerical model of convection combined with the parameterized theory. Large scale melting of the satellite’s matter and gravitational differentiation of silicates from ices are included. The results are confronted with observational data from Cassini spacecraft that indicate minor differentiation of the satellite’s interior. We suggest that partial differentiation of the satellite’s interior is accompanied (or followed) by the process of light fraction uprising to the surface. The calculation indicates that the partial differentiation of the matter of the satellite’s interior is possible only for narrow range of parameters. In particular, we found that the time from the formation of CAI (calciumaluminum rich inclusions in chondrites) to the end of accretion of Rhea is in the range of 3–4 My.  相似文献   

8.
Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ~650-m-wide and ~225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7–2.6 g cm?3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s?1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2?=?68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (~14.4 and 8.0 km). The hot (~936 °C) deep reservoir fed the central vent while the shallow reservoir (~858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those forming the Frontal Volcanic Arc of Ecuador and Colombia.  相似文献   

9.
Agriculture crop residue burning in tropics is an important source of atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. Synchronous measurements using micro-pulsed lidar, MICROTOPS-II sun photometer, multi-filter rotating shadow band radiometer (MFRSR) on aerosol optical depth and ground reaching solar irradiance were carried at an urban location in central region of India. Aerosol backscatter profiles obtained from micro-pulse lidar showed elevated aerosol layers up to ~3 km on certain days during October 2007. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains over large regions. Radiative forcing of aerosols estimated from SBDART model with input information on aerosol chemical properties, aerosol optical depth and single scattering albedo and broadband solar irradiance measurements using MFRSR showed good correlation (R=0.98).  相似文献   

10.
In this study, we have estimated the different sea level components (observed sea level from satellite altimetry, steric sea level from in situ hydrography—including Argo profiling floats, and ocean mass from Gravity Recovery and Climate Experiment; GRACE), in terms of regional and interannual variability, over 2002–2009. We compute the steric sea level using different temperature (and salinity) data sets processed by different groups (SCRIPPS, CLS, IPRC, and NOAA) and first focus on the regional variability in steric and altimetry-based sea level. In addition to El Nino–La Nina signatures, the observed and steric sea level data show clear impact of three successive Indian Ocean Dipoles in 2006, 2007, and 2008 in the Indian Ocean. We next study the spatial trend patterns in ocean mass signal by comparing GRACE observations over the oceans with observed minus steric sea level. While in some regions, reasonably good agreement is observed, discrepancy is noticed in some others due to still large regional trend errors in Argo and GRACE data, as well as to a possible (unknown) deep ocean contribution. In terms of global mean, interannual variability in altimetry-based minus steric sea level and GRACE-based ocean mass appear significantly correlated. However, large differences are reported when short-term trends are estimated (using both GRACE and Argo data). This prevents us to draw any clear conclusion on the sea level budget over the recent years from the comparison between altimetry-based, steric sea level, and GRACE-based ocean mass trends, nor does it not allow us to constrain the Glacial Isostatic Adjustment correction to apply to GRACE-based ocean mass term using this observational approach.  相似文献   

11.
We investigated failures in the global positioning system (GPS) performance produced by solar radio bursts with unprecedented radio flux density during the X6.5 and X3.4 solar flares on 6 and 13 December 2006, respectively. The effect of these events on GPS was compared to that of the X17.2 solar flare of 28 October 2003. Significant experimental evidence was found that high-precision GPS positioning on the Earth's entire sunlit side was partially disrupted for more than 10–15 min on 6 and 13 December 2006. The high level of phase slips and count omissions resulted from the wideband solar radio noise emission. Our results provide serious grounds for revising the role of space weather factors in the functioning of modern satellite systems and for considering these factors more carefully in practice. Similar failures in the operation of satellite navigation systems (GPS, GLONASS, and GALILEO) can be fatal for operating safety systems as a whole and lead to great financial losses. Another important conclusion of our investigation concerns the continuous calibrated monitoring of the level of the solar radio emission flux. This monitoring involved a large number of solar radio spectrographs and allowed us to estimate the solar radio noise level in the range of the GPS–GLONASS–GALILEO frequencies.  相似文献   

12.
The South China Sea (SCS) is a semi-enclosed deep basin with complex topography includ-ing broad continental shelves, steep slopes, and a large deep basin. It is dominated by prevailing southwest monsoon in summer and by much stronger northeast monsoon in…  相似文献   

13.
The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50–100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471–2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645–2662, 1997; Chelton et al. Prog Oceanogr 91: 167–216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445–454, 1970) and Weiss (Physica D 48: 273–294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.  相似文献   

14.
Ground-based magnetic observatories and geomagnetic satellites can observe the induced magnetic field generated by the motion of seawater containing sodium and chlorine ions.Calculating the three-dimensional (3-D) spatial distribution of tide-induced magnetic fields (TIMF) is crucial for inverting the electrical conductivity structure of the oceanic lithosphere.It also serves as an essential basis for designing optimal geomagnetic observatories and satellite orbits.However,existing methods for s...  相似文献   

15.
The results of comparative analysis of sea surface temperature variations along horizontal sections in the coastal zone are given. The data used had been taken by MODIS spectroradiometers (Aqua, Terra) in the Southeastern Baltic, in periods of coastal upwelling—in the periods of autumn differential cooling over coastal continental slopes (facilitating water subsidence along these slopes). Studying 135 SST images of coastal upwelling events in May–October 2000–2014 and four cooling events in October–November 2002, 2004, 2005, and 2009 revealed the specific features of the shape of horizontal temperature profiles on sea surface along sections over coastal continental slopes. In addition to the higher differences between water surface temperatures in the deep and coastal parts of the sea (up to 14°C), upwelling features an appreciable distance from the cold-water core to the coast (up to 3–15 km) and a variable shape of horizontal profiles of water temperature on the sea surface along the sections. Conversely, during autumn differential cooling, water temperature difference on the surface is relatively small, the shape of the dependence of surface water temperature on the distance to the shore does not change over time, varies only slightly with the alongshore displacement of the section, and shows low sensitivity to bathymetry and even to wind effect. Thus, the analysis of the shape of the temperature on the sea surface along horizontal sections over coastal continental slopes enables the diagnostics of the regime of vertical water exchange in the coastal zone.  相似文献   

16.
Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of sufficient ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing a preliminary real-time prediction system to identify where rainfall-triggered landslides will occur is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.gov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, land cover classification, etc.) using a GIS weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide hazards at areas with high susceptibility. A major outcome of this work is the availability for the first time of a global assessment of landslide hazards, which is only possible because of the utilization of global satellite remote sensing products. This preliminary system can be updated continuously using the new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and mitigation activities across the world.  相似文献   

17.
The spatial resolution and quality of geopotential models (EGM2008, EIGEN-5C, ITG-GRACE03s, and GOCO-01s) have been assessed as applied to lithospheric structure of the Andean and Central American subduction zones. For the validation, we compared the geopotential models with existing terrestrial gravity data and density models as constrained by seismic and geological data. The quality and resolution of the downward continued geopotential models in the Andes and Central America decrease with increasing topography and depend on the availability of terrestrial gravity data. High resolution of downward continued gravity data has been obtained over the Southern Andes where elevations are lower than 3000 m and sufficient terrestrial gravity data are available. The resolution decreases with an increase in elevation over the north Chilean Andes and Central America. The low resolution in Central America is mainly attributed to limited surface gravity data coverage of the region.To determine the minimum spatial dimension of a causative body that could be resolved using gravity gradient data, a synthetic gravity gradient response of a spherical anomalous mass has been computed at GOCE orbit height (254.9 km). It is shown that the minimum diameter of such a structure with density contrast of 240 kg m−3 should be at least ∼45 km to generate signal detectable at orbit height. The batholithic structure in Northern Chile, which is assumed to be associated with plate coupling and asperity generation, is about 60–120 km wide and could be traceable in GOCE data. Short wavelength anomalous structures are more pronounced in the components of the gravity gradient tensor and invariants than in the gravity field.As the ultimate objective of this study is to understand the state of stress along plate interface, the geometry of the density model, as constrained by combined gravity models and seismic data, has been used to develop dynamic model of the Andean margin. The results show that the stress regime in the fore-arc (high and low) tends to follow the trend of the earthquake distributions.  相似文献   

18.
 GOES provides thermal data for all of the Hawaiian volcanoes once every 15 min. We show how volcanic radiance time series produced from this data stream can be used as a simple measure of effusive activity. Two types of radiance trends in these time series can be used to monitor effusive activity: (a) Gradual variations in radiance reveal steady flow-field extension and tube development. (b) Discrete spikes correlate with short bursts of activity, such as lava fountaining or lava-lake overflows. We are confident that any effusive event covering more than 10,000 m2 of ground in less than 60 min will be unambiguously detectable using this approach. We demonstrate this capability using GOES, video camera and ground-based observational data for the current eruption of Kīlauea volcano (Hawai'i). A GOES radiance time series was constructed from 3987 images between 19 June and 12 August 1997. This time series displayed 24 radiance spikes elevated more than two standard deviations above the mean; 19 of these are correlated with video-recorded short-burst effusive events. Less ambiguous events are interpreted, assessed and related to specific volcanic events by simultaneous use of permanently recording video camera data and ground-observer reports. The GOES radiance time series are automatically processed on data reception and made available in near-real-time, so such time series can contribute to three main monitoring functions: (a) automatically alerting major effusive events; (b) event confirmation and assessment; and (c) establishing effusive event chronology. Received: 12 January 1999 / Accepted: 13 July 1999  相似文献   

19.
Abstract

Satellite radar altimetry is complementary to in situ limnimetric surveys as a means of estimating the water height of large rivers, lakes and flood plains. Production of water height time series by satellite radar altimetry technology requires first the selection of radar ground target locations corresponding to water body surfaces under study, i.e. the definition of “virtual limnimetric stations”. We propose to investigate qualitative and quantitative differences between three representative virtual station creation methodologies: (a) a fully manual method, (b) a semi-automatic method based on a land cover characterization that allows the water body surface under study to be located; and (c) an original fully automatic procedure that exploits a digital elevation model and an estimation of the river width. The results yielded by these three methods are comparable: maximum absolute magnitudes of water height differences being 0.46, 0.26 and 0.15 m for, respectively, 95, 90 and 80% of the water height values obtained. Moreover, more than 67% and 92% of time series jointly produced by the methods present root mean square differences lower than 20 and 50 cm, respectively. The results show that the fully automatic method developed herein provides as reliable results as the fully manual one. This opens the way to use of satellite radar altimetry for the generation of water height time series on a large scale, and considerably extends the applicability of satellite radar altimetry in hydrology.

Citation Roux, E., Santos da Silva, J., Vieira Getirana, A. C., Bonnet, M.-P., Calmant, S., Martinez, J.-M. & Seyler, F. (2010) Producing time series of river water height by means of satellite radar altimetry—comparative study. Hydrol. Sci. J. 55(1), 104–120.  相似文献   

20.
Near daily satellite monitoring of ocean colour using sea viewing wide angle of field viewing sensor (SeaWiFS) allowed the oceanic and near coastal chlorophyll-a distributions to be followed across the Galápagos Marine Reserve (GMR) from space. In the aftermath of the Jessica spill early indications suggested that, compared to the three preceding years 1998-2000, local chlorophyll concentrations over January 2001 were elevated across the Galápagos Marine Reserve [Biological Impacts of the Jessica Oil Spill on the Galápagos Environment: Preliminary Report. Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador, 2001]. At the time of the spill the central and eastern extent of the archipelago was experiencing a spatially extensive moderate bloom event (0.5-2.5 mgm(-3) chl-a) extending over the central islands, including the source of the spill and areas of known impact such as the islands of Santa Fé, eastern Santa Cruz and Floreana directly in the advection path.Further investigation shows that chlorophyll across the affected regions of western San Cristóbal, Santa Fé, southeast Santa Cruz, eastern Floreana and eastern Isabela declined in the week directly following the spill event, yet rose in the successive month to levels analogous to preceding years. Although there may have been a localised effect of the spill upon near coast phytoplankton primary production in the short term, the observed variance in the weeks following the spill was not significant in comparison to the normal high variation between years and within the El Ni?o/Southern Oscillation signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号