首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many innovative ameliorating techniques including chemical stabilization have been in practice for improving the behaviour of problematic, highly expansive clays. This paper presents a comparative study on the effect of fly ash (FA) and rice husk ash (RHA) on index and engineering properties of an expansive clay. Liquid limit (LL), plastic limit, plasticity index (PI) and free swell index (FSI), and coefficient of permeability (k), unconfined compressive strength and swelling pressure were determined at varying quantities of FA and RHA. Coefficient of permeability, swelling pressure and unconfined compressive strength of the FA-clay and the RHA-clay blends were determined at their respective OMC and MDD obtained from Proctor compaction tests. LL, PI and FSI decreased significantly with increasing FA and RHA contents. Coefficient of permeability, however, increased with additive content. Further, swelling pressure of the blends decreased with increasing additive content.  相似文献   

2.
皖中膨胀土的承载比(CBR)强度特性研究   总被引:5,自引:4,他引:1  
针对皖中地区高速公路建设中遇到的膨胀土问题,选取合六叶高速公路典型土样开展了系统的承载比(CBR)特性试验研究,并在此基础上探讨了膨胀土作为路基填料的适用性。研究表明:(1)起始含水量对膨胀土CBR值影响显著,CBR最大值对应的含水量高于最佳含水量,且击实功越大,二者差值也越大;(2)CBR膨胀量随起始含水量增大而减小,起始含水量越低,CBR膨胀量就越大,路基的水稳性就越差;(3)当击实功较大时,膨胀土的最佳含水量较小,适合填筑的可变含水量范围较宽,建议现场施工控制采用重型击实标准;(4)在重型击实条件下,将弱膨胀土起始含水量控制在比最优含水量大2%4%范围内,能同时满足压实度和CBR值要求以用于填筑下路堤,中膨胀土作为路基填料时必须经过改性处理。研究结果对于在膨胀土地区进行公路建设具有参考意义。  相似文献   

3.
查甫生  刘松玉  杜延军 《岩土力学》2006,27(Z1):549-554
研究掺粉煤灰对合肥膨胀土的物理性质指标以及胀缩性指标等的影响,探讨利用粉煤灰改良膨胀土的措施与效果。试验研究结果表明,在膨胀土中掺入适量的粉煤灰可有效降低膨胀土的塑性指数、降低膨胀势、减小线缩率与降低活性。在膨胀土中掺入粉煤灰还可改变膨胀土的击实特性,一定击实功作用下,随着掺灰率的增加,土体的最优含水率与最大干密度均减小,膨胀土中掺入粉煤灰后,膨胀土可在较小的含水率下通过击实或压实达到稳定。掺灰膨胀土的膨胀量与膨胀力随养护龄期的增长而减小;没有经过养护的掺灰土,其无侧限抗压强度随掺灰率的变化几乎没有变化,经过7 d养护后,土的无侧限抗压强度有所增长,并且存在一个峰值点,合肥膨胀土的无侧限抗压强度所对应的最佳掺粉煤灰率约为15 %~20 %。  相似文献   

4.
Expansive soils swell on absorbing water and shrink on evaporation thereof. Because of this alternate swelling and shrinkage, civil engineering structures founded in them are severely damaged. For counteracting the problems of expansive soils, different innovative techniques were suggested. Stabilization of expansive clays with various additives has also met with considerable success. This paper presents, by comparison, the effect of lime and fly ash on free swell index (FSI), swell potential, swelling pressure, coefficient of consolidation, compression index, secondary consolidation characteristics and shear strength. Lime content was varied as 0%, 2%, 4%?and 6%?and fly ash content as 0%, 10%?and 20%. A fly ash content of 20%?showed significant reduction in swell potential, swelling pressure, compression index and secondary consolidation characteristics and resulted in increase in maximum dry density and shear strength. Swell potential and swelling pressure decreased with increase in lime content also. Further, consolidation characteristics improved. Compaction characteristics and unconfined compression strength improved at 4%?lime and reduced at 6%?lime.  相似文献   

5.
湛文涛  赵文建  倪啸  杨和平 《岩土力学》2009,30(Z2):239-243
基于膨胀土可以直接用作路堤填料的分类指标体系,在室内开展了3种不同膨胀土的物理性质、击实性状、强度特性试验研究,验证广西百隆高速公路膨胀土路段的膨胀土也可以直接用作路堤填料,并结合现场实体工程的效果验证用改进CBR值、改进CBR膨胀量和稠度3指标作为膨胀土路堤填料的分类指标体系的合理性。通过对标准CBR试验和改进CBR试验的对比,进一步验证了用改进CBR试验法评定膨胀土承载强度的合理性。由百色膨胀土的不浸水CBR试验,说明可以用封闭包盖对百隆路膨胀土路堤进行物理处治。实体工程中采用土性最差的1号膨胀土做填芯和用红黏土包边,得到的工程效果令人满意。由室内外试验结果,可以得出这3种百色膨胀土都可以直接用作路堤填料。  相似文献   

6.
Improvement in engineering properties of expansive soils by mixing ground granulated blast furnace slag (GGBFS) is the main focus of this research. For this purpose two expansive soil samples were collected from DG Khan and Sialkot areas (Pakistan). Classification tests revealed that DG Khan sample belonged to fat clay (CH) while Sialkot soil was lean clay (CL) as classified by Unified Soil Classification System. GGBFS has been added in varying proportions between 0 and 55% in these soil samples to study its role in stabilizing these expansive soils. Based on the laboratory test performed on composite soil samples, it was observed that maximum dry unit weight increased up to 10 % by adding 50% GGBFS in both samples. California bearing ratio (CBR) value showed an increase from 3.2 % to 11.5% for DG Khan soil while CBR values varied from 2.4% to 10.7% for Sialkot soil by mixing 50% GGBFS. Addition of 30 % GGBFS to DG Khan soil reduced swell potential from 8 % to 2 % while in Sialkot soil, 20 % addition of GGBFS reduced swell potential from 5 % to 2 %. Unconfined compressive strength of remoulded sample cured for 28 days increased by about 35% with the addition of 30%GGBFS. The results indicated that mixing of GGBFS in the expansive soil samples have a marked increase in their engineering properties. Also, it is an affective and environmental friendly means to dispose waste of steel industry.  相似文献   

7.
碱渣改良膨胀土室内试验研究   总被引:10,自引:0,他引:10  
通过室内试验,探讨利用碱渣作为添加剂对膨胀土改良的可行性和改良效果和碱渣改性土的基本物理力学性质和膨胀性。研究结果表明,随着掺渣率的增加,碱渣改性土的黏性成分的含量降低,粗颗粒含量增加,导致相对密度、液限、塑性指数、自由膨胀率、有荷膨胀量均呈明显减小趋势,这说明碱渣对膨胀土膨胀性的改良有显著效果;碱渣改性土可击实含水率范围较之膨胀土宽,这给碱渣改性土的施工带来很大方便;经过7 d养护后的土样无侧限抗压强度和抗剪强度都显著增加,并在掺渣率为30%时存在一个峰值点。抗剪强度增强主要体现在黏聚力显著增加,而内摩擦角变化不大。  相似文献   

8.
Lime stabilization is an effective way of stabilizing expansive clays, which cause significant environmental problems both as earth and foundation materials. There are considerable environmental benefits in using the in situ lime-stabilized expansive soils in the construction of road pavements, fill or foundations instead of importing valuable granular materials. However, due to high plastic nature of these clays, achieving appropriate pulverization in field applications is a difficult task. This paper presents the results of a laboratory investigation to determine the effects of soil pulverization quality on lime stabilization of a local expansive clay. Effect of mellowing the soil–lime mixtures for 24 h was also studied to find out whether this would compensate for poor pulverization. The clay studied had swelling pressures varying between 300 and 500 kN/m2 and free swell potential as high as 19%. In this study, 3, 6 and 9% lime by dry weight were used for lime-stabilized samples. Unconfined compression strength, failure strain and Secant Elasticity Modulus values were measured through unconfined compression strength testing. The results of the study showed that lime stabilization improved plasticity, workability, compressive strength, elastic moduli and swelling and compressibility behavior of the expansive clay. While mellowing did not have a definite effect on the measured strength and moduli values, soil pulverization quality considerably affected the unconfined compression strength and Secant Elasticity Modulus values. The higher the percentage passing No. 4 sieve, the higher the effectiveness of lime treatment. Based on the data obtained in this study, two original equations were derived to assign Secant Elasticity Modulus based on unconfined compression strength, for different soil pulverization qualities. Microfabric investigations conducted by Environmental Scanning Electron Microscope and Mercury Intrusion Porosimetry exposed the effect of lime stabilization on fabric, porosity and pore size distributions. The results of the study clearly demonstrated that if enough time and effort were not given to soil pulverization process in lime stabilization works in field applications, lower performance and therefore increased environmental problems should be expected.  相似文献   

9.
Expansive soils swell on absorbing water and shrink on evaporation thereof. Because of this alternate swelling and shrinkage, civil engineering structures founded in them are severely damaged. For counteracting the problems of expansive soils, different innovative techniques were suggested. Stabilization of expansive clays with various additives has also met with considerable success. This paper presents, by comparison, the effect of lime and fly ash on free swell index (FSI), swell potential, swelling pressure, coefficient of consolidation, compression index, secondary consolidation characteristics and shear strength. Lime content (weight of lime/weight of dry soil) was varied as 0%, 2%, 4%?and 6%?and fly ash content (weight of fly ash/weight of dry soil) as 0%, 10%?and 20%. A fly ash content of 20%?showed significant reduction in swell potential, swelling pressure, compression index and secondary consolidation characteristics and resulted in increase in maximum dry density and shear strength. Swell potential and swelling pressure decreased with increase in lime content also. Further, consolidation characteristics improved. Compaction characteristics and unconfined compression strength improved at 4%?lime and reduced at 6%?lime.  相似文献   

10.
An expansive soil (black cotton soil) treated with up to 10 % cement kiln dust (CKD), a waste obtained from the manufacture of cement, was evaluated for use as a flexible pavement construction material. Laboratory tests were carried out on specimens compacted with British Standard light, British Standard light or standard Proctor (relative compaction = 100 %) energy. Results obtained show that the index properties of the soil improved with CKD treatment. Peak unconfined compressive strength of 357.07 kN/m2 and California bearing ratio (CBR) of 7 % as well as resistance to loss in strength of 44 % were recorded at 10 % CKD treatment. Reduction in the particle sizes with curing period was observed when samples were viewed through the scanning electron microscope. The study showed that CKD can be beneficially used to improve the subgrade of lightly trafficked roads and as admixture in lime stabilization during construction of flexible pavements over expansive soil.  相似文献   

11.
Behavior of expansive soils stabilized with fly ash   总被引:6,自引:0,他引:6  
Expansive soils cause serious problem in the civil engineering practice due to swell and shrinkage upon wetting and drying. Disposal of fly ash, which is an industrial waste in both cost-effective and environment-friendly way receives high attention in China. In this study, the potential use and the effectiveness of expansive soils stabilization using fly ash and fly ash-lime as admixtures are evaluated. The test results show that the plasticity index, activity, free swell, swell potential, swelling pressure, and axial shrinkage percent decreased with an increase in fly ash or fly ash-lime content. With the increase of the curing time for the treated soil, the swell potential and swelling pressure decreased. Soils immediately treated with fly ash show no significant change in the unconfined compressive strength. However, after 7 days curing of the fly ash treated soils, the unconfined compressive strength increased significantly. The relationship between the plasticity index and swell-shrinkage properties for pre-treated and post-treated soils is discussed.  相似文献   

12.
竹城公路高液限土与红粘土路用性能的试验研究   总被引:11,自引:0,他引:11  
曾静  邓志斌  兰霞  盛谦 《岩土力学》2006,27(1):89-92
通过详尽的室内试验,揭示了竹城公路高液限土与红粘土特殊的路用特性。针对其特点,采用石灰进行高液限土的改性试验,研究其物理力学性质和强度变化规律。研究结果表明,经石灰改性处理的高液限土,液限与塑性指数均降低,膨胀性显著减弱,CBR大幅提升,可用作高等级公路的路基填料。另外探讨了《公路路基设计规范》中关于高液限土与红粘土规定得不够严密的相关内容,为合理有效地利用高液限土与红粘土和补充或修订相应的技术规范做了必要的工作。  相似文献   

13.
纳米硅粉水泥土的强度特性及固化机理研究   总被引:8,自引:0,他引:8  
王文军  朱向荣 《岩土力学》2004,25(6):922-926
将性能优异的纳米硅粉作为外掺剂应用于水泥土改性研究。通过室内试验,探讨了纳米硅粉水泥土的强度特性。试验表明,一定掺量下的纳米硅粉能够显著提高水泥土的各个龄期强度。结合试验测试和理论分析,探讨了纳米硅粉在水泥水化硬化过程中的作用以及纳米硅粉与土之间的作用,在此基础上,分析了纳米硅粉改性水泥土工程性状的机理,旨在为纳米硅粉应用于工程实践开展理论和试验研究探索。  相似文献   

14.
The present research work deals with an expansive high plastic clayey soil with cement kiln dust (CKD) and stabilizer (RBI Grade 81). The physical and engineering properties of soil are plasticity, compaction, unconfined compressive strength (UCS), consolidation and California bearing ratio (CBR) of the clayey soil and clay treated with CKD and stabilizer were determined. Soil chemistry was examined before and after treatment using scanning electron microscope (SEM) and elemental dispersive spectrometer. The clay mixed with CKD, CKD and RBI Grade 81 was found that optimum contents are 10 % (CKD), 15 % CKD with 4 % RBI Grade 81, respectively. The result indicates that CKD alone will decrease maximum dry density and increase optimum moisture content. CKD with RBI Grade 81 slightly increases maximum dry density and decreases optimum moisture content. UCS increased with CKD alone and CKD with RBI Grade 81 from 88.3 to 976 kN/m2, respectively. CBR values were increased by the addition of CKD, CKD with RBI Grade 81 from 1.65 to 21.7 %. With the curing time of 3, 14 and 28 days, UCS and CBR values were increased due to pozzolanic reaction from cementations material. The treated soil has considerable reduction in compression index. SEM images clearly indicate the formation of CSH and CAH gel.  相似文献   

15.
红黏土路基填筑压实度控制指标探讨   总被引:2,自引:0,他引:2  
红黏土属于一类典型的特殊土,路基施工规范指出,特殊填料进行填筑路基时可根据具体情况适当降低压实度要求,并且规定有些高液限、高塑指黏土不能直接作为路基填料填筑。利用某高速公路处的红黏土进行了重型击实和承载比试验,试验结果表明:红黏土在最优含水率附近具有很强的水敏性。最优含水率点对应的CBR值并非最大值,其最大CBR值对应的含水率大于最优含水率3%左右,在此基础上结合土体的强度、压缩性、胀缩性、渗透性等指标随压实度变化的规律,确定该桩号红黏土作为下路堤填料其压实度可降低2.5%,填筑含水率控制在35%左右。  相似文献   

16.
Silica fume is identified as a pozzolan and supplementary cementitious material that can utilize to improve the mechanical properties of stabilized soil with cement. Silica fume wherein mixes with cemented soil in a proper dosage, it is susceptible to induce pozzolanic effect in cemented soil due to its fineness and high content of SiO2 and Al2O3. The pozzolanic effect is vital to ensure ongoing strength of stabilized soil with cement. Up to now, stabilization of clay with cement and silica fume is not completely explored. This paper investigates: (i) the capability of utilizing the silica fume as a supplementary material for cement to maximize the filler and pozzolanic effects of compacted and stabilized soil (ii) the mechanical properties of compacted and stabilized clay with various proportions of cement and silica fume. For this purpose, a total of 120 untreated and stabilized soil admixtures were prepared by replacing ordinary Portland cement with silica fume. The influence of partial replacement of cement with silica fume on the bearing capacity, shear and compressive strength of compacted and stabilized soil was investigated. To achieve such aims, the stabilized soil specimens were examined in laboratory under direct shear, unconfined compression and California bearing ratio tests. Based on the findings of this paper the 28-day UCS of the stabilized soil with 2% partial substitution of cement with silica fume is almost 3.5-fold greater than that of the untreated. It was found that the optimum mix design for the stabilized soil is 6% cement and 2% silica fume. In conclusion, a notable discovery is that the partial substitution of cement with 2% silica fume in the optimum mix design significantly refined the pore spaces as a result of pozzolanic activity and filler effect of silica fume.  相似文献   

17.
百色重塑膨胀土抗剪强度的试验研究   总被引:3,自引:0,他引:3  
赵文建  湛文涛  倪啸  杨和平 《岩土力学》2009,30(Z2):244-248
通过对不同初始含水率、不同干密度下百色重塑膨胀土直剪试验,研究了百色击实重塑膨胀土在不同垂直压力下的峰值强度和残余强度,分析了其抗剪强度的作用机制。研究表明:随着干密度的增加,土体的峰值强度增大,残余强度变化不大;随着上覆荷载的增加,土体的抗剪强度明显增加,表明物理处治技术填筑膨胀土路堤能保证其强度和稳定性;干密度对重塑膨胀土的峰值强度影响较大,而对残余强度影响很小;重塑膨胀土的残余强度与它的结构、应力历史、起始含水率没有关系,而只取决于黏土颗粒的形态、大小、含量和矿物成分等因素。  相似文献   

18.
崔可锐  李国峰 《江苏地质》2013,37(4):635-638
膨胀土属高塑性黏土,是一种典型的非饱和土,性质极不稳定,其吸水膨胀、失水收缩、干缩裂隙发育等特性常常使建筑物产生不均匀的胀缩变形,造成在膨胀土地基上的建筑物位移、开裂、倾斜,甚至破坏,是一种典型的工程灾害性地质土。另外,膨胀土边坡也常由于雨水的作用失稳,造成不必要的损失。近年来,对膨胀土的强度和变形特性的研究已成为热点。其最大的特点是:在季节气候的影响下其强度特性具有明显的规律变动。通过模拟土体季节性的干缩湿胀,测定其自由膨胀率、液塑限、抗剪强度和无侧限抗压强度,并与掺入7%石灰后的改良土的试验数据及其他试验资料对比,探讨干湿循环效应对膨胀土强度的影响。  相似文献   

19.
细粒土路基填料承载比试验技术要求及影响因素   总被引:1,自引:0,他引:1  
杨广庆  岳祖润  吕鹏  张保俭 《岩土力学》2007,28(11):2456-2460
分析了美国、英国、日本和我国交通行业标准对承载比(CBR)试验要求的异同,强调了承载比试验的操作技术及注意事项,并对试验中的一些问题进行了有益的探讨。为了研究影响黏性土CBR值的主要因素,结合在建高速公路15组填料进行了物理、力学试验。分别从土体的颗粒组成、矿物成分以及黏土矿物成分等几方面研究了黏性土填料CBR值的影响。结果显示,在标准的试验方法和相同的试验条件下,当土体的塑性指数相同时,影响CBR值的因素主要是土体中矿物类型及其含量的多少,其次为黏粒组颗粒曲线分布情况及黏粉比m。  相似文献   

20.
This paper investigated the geotechnical properties of smectite-rich shale, and its implications as foundation material. Ten expansive shale samples were collected from foundation materials at Akpugo in Nkanu West L.G.A. of Enugu State, southeast Nigeria. Samples were subjected to grading, Atterberg limits-cum-compaction tests, slake durability, specific gravity, permeability, undrained triaxial tests and x-ray diffraction scan. Fines and sand contents of the soil samples range from 51–97% and 3–49% respectively. Liquid limit, plastic limit and plasticity index have average values of 60.7, 19.1 and 43.3% respectively. Linear shrinkage and free swell showed average of 16.3% and 76%. These results are indicative of predominant clay soil with high plasticity, compressibility and water holding capacity. XRD scan established presence of smectite and illite clay minerals, confirming soil high plasticity, capable of causing instability in foundation soil. The shale achieved maximum dry density range between 1.79 and 1.94 kg/m3 at optimum moisture content range of 6.9–12.8%, indicating poor to fair foundation materials. The shale cohesion ranges from 15 to 30 kPa while the angle of friction ranges between 10° and 18°, signifying an average strength soil material. Samples slake durability index and specific gravity fall within 24–55% and 2.50–2.58 respectively, suggesting non-durable and weak soil. Permeability of the samples ranges between 7.36 ×10?6 and 4.77 ×10?8 cm/s which suggested low drainage capable of causing water-log at sites. Therefore, the shale could be generally classified as poor to fair foundation material, which on moisture influx experience reduction in strength due to deterioration of its constituent minerals, especially clay and cement materials during the lifespan of engineering structures. Authors therefore recommend modification of foundation soil, appropriate foundation design and good drainage control as ways of improving stability of engineering structures underlain by expansive shale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号