首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedimentary rocks from the northern margin of the Trobriand Platform, the north wall of the New Britain Trench, and the floor of the Solomon Sea Basin are volcaniclastics, mudrocks, and neritic and bathyal limestones. Arc-volcanic debris from calc-alkaline or high-K magmatic sources is present at each locality. A minor metamorphic component occurs at one site on the Trobriand Platform which yielded Early Eocene to Middle Miocene material, and at the New Britain Trench site, which yielded Miocene or older and post-Miocene samples. Solomon Sea Basin samples are mudrocks which are apparently no older than Late Pliocene.  相似文献   

2.
A south-dipping Subduction system which underlies the Trobriand Trough and 149° Embayment, on the southern margin of the Solomon Sea, is active or was recently active. Oceanic basement is overlain by 2.5 s, two-way travel time (TWTT), of sediment that shows at least two stages of deformation: early thrusts (inner wall) and normal faults (outer wall), and later normal faults that have elevated the outer trench margin. Thrust anticlines and slope basins are developed on the inner wall. The floor of the Solomon Sea Basin arches upward between the Trobriand Trough and the New Britain Trench to form isolated peaks and ridges in the east (152° Peaks) and an east-west Central Ridge in the west. Structures in the subduction system, and in the Solomon Sea Basin, plunge westward towards the point of collision with the New Britain Trench.  相似文献   

3.
The floor of the western Solomon Sea (for new bathymetric map see inside back cover of this issue) is dominated by the arched and ridged basement of the Solomon Sea Basin, the partly-sediment-filled New Britain Trench, and a more completely filled trench, the Trobriand Trough. There is a deep basin where the trenches join (149° Embayment), and a silled basin west of the New Britain Trench (Finsch Deep). Submarine canyons descend from the west and south to the 149° Embayment. Abyssal fans and plains are structurally defined and locally disturbed by young faults. Probable submerged pinnacle reefs stand in water depths as great as 1,200 m.  相似文献   

4.
The floor of the western Solomon Sea (for new bathymetric map see inside back cover of this issue) is dominated by the arched and ridged basement of the Solomon Sea Basin, the partly-sediment-filled New Britain Trench, and a more completely filled trench, the Trobriand Trough. There is a deep basin where the trenches join (149° Embayment), and a silled basin west of the New Britain Trench (Finsch Deep). Submarine canyons descend from the west and south to the 149° Embayment. Abyssal fans and plains are structurally defined and locally disturbed by young faults. Probable submerged pinnacle reefs stand in water depths as great as 1,200 m.  相似文献   

5.
Several heat flow measurements were made during the NAT83 cruise in the central part of the Solomon Sea Basin. The average value of 87 mW/m2 (2.08 HFU) calculated from these and other data indicates that the age of the Solomon Sea Basin may range from 24 to 44 Ma. This is supported by the water depth, of approximately 4,500 m, versus age relationship. There is a possibility that the Solomon Sea Basin is not a back-arc basin associated with an arc but was formerly a relatively large oceanic plate. The agreement in age from both heat flow and water depth data favors the latter hypothesis.  相似文献   

6.
Several heat flow measurements were made during the NAT83 cruise in the central part of the Solomon Sea Basin. The average value of 87 mW/m2 (2.08 HFU) calculated from these and other data indicates that the age of the Solomon Sea Basin may range from 24 to 44 Ma. This is supported by the water depth, of approximately 4,500 m, versus age relationship. There is a possibility that the Solomon Sea Basin is not a back-arc basin associated with an arc but was formerly a relatively large oceanic plate. The agreement in age from both heat flow and water depth data favors the latter hypothesis.  相似文献   

7.
Volcanic rocks collected from the Solomon Sea Basin are mostly ferrobasalt lavas similar to evolved MORB; an exception is a single sample of basaltic crystal tuff invaded by later basalt. The rocks contain labradorite, aluminous diopsidic augite, and titanomagnetite, with olivine and pigconite in the more vitrophyric samples, and segregation vesicles in some. Cobbles dredged from Gudaraba Canyon, south of the Solomon Sea Basin, include both MORB-like glassy lava and K-metasomatised basalt and andesite(?). Two small pieces of volcanic glass from the southern Bismarck Sea are more primitive MOR-type basalts.  相似文献   

8.
Methane, ethane, ethene, propane, and propene are common hydrocarbon gases in near-surface sediment from offshore areas in the southern Pacific Ocean near Papua New Guinea, the Solomon Islands, Vanuatu, Tonga, New Zealand, and Antarctica. Sea floor sites for sampling of sediment were selected on the basis of anomalies in marine seismic records, and the samples were intentionally biased toward finding possible thermogenic hydrocarbon gases. In none of the areas, however, were thermogenic hydrocarbons clearly identified. The hydrocarbon gases that were found appear to be mainly the products ofin situ microbial processes.  相似文献   

9.
In 1983–84, a cooperative geological/geophysical program was carried out in the western Solomon Sea and northeastern Bismarck Sea on the Japanese vesselNatsushima. Scientists representing Japan, Australia, Papua New Guinea, and the regional marine geoscience organization CCOP/SOPAC participated in the study. The first papers were published inGeo-Marine Letters, Volume 6, No. 4. This issue, containing six papers, is the second on the results of that work and the final of the special issues on the Western Solomon Sea and Region.  相似文献   

10.
Rock fragments dredged from four R/VNatsushima stations contain Tertiary foraminifera. The oldest sample is an upper bathyal biomicrite of Early Eocene age (52 to 53.5 Ma) from the the Trobriand Platform. Upper Oligocene-Lower Miocene neritic limestones were located off the Trobriand Platform and on the inner wall of the New Britain Trench. Miocene bathyal sediments come from the Trobriand Platform; similar Pliocene rocks were recovered here as well as from the inner wall of the New Britain Trench and the central part of the Solomon Sea Basin. No reworked pre-Tertiary foraminifera are present in any sample.  相似文献   

11.
Rock fragments dredged from four R/VNatsushima stations contain Tertiary foraminifera. The oldest sample is an upper bathyal biomicrite of Early Eocene age (52 to 53.5 Ma) from the the Trobriand Platform. Upper Oligocene-Lower Miocene neritic limestones were located off the Trobriand Platform and on the inner wall of the New Britain Trench. Miocene bathyal sediments come from the Trobriand Platform; similar Pliocene rocks were recovered here as well as from the inner wall of the New Britain Trench and the central part of the Solomon Sea Basin. No reworked pre-Tertiary foraminifera are present in any sample.  相似文献   

12.
Magnetic anomalies measured in the central to western half of the Solomon Sea, when considered with other magnetic data, reveal the existence of linear patterns. Magnetic lineation anomaly models of the Cenozoic, 65 to 0 Ma, suggest that an age between 34 and 28 Ma and a half-rate spreading speed of 5.8 cm/yr for the northern flank of a former spreading center best fits our present magnetic data in the Solomon Sea Basin. Heat flow and bathymetry data support this preferred model.  相似文献   

13.
Magnetic anomalies measured in the central to western half of the Solomon Sea, when considered with other magnetic data, reveal the existence of linear patterns. Magnetic lineation anomaly models of the Cenozoic, 65 to 0 Ma, suggest that an age between 34 and 28 Ma and a half-rate spreading speed of 5.8 cm/yr for the northern flank of a former spreading center best fits our present magnetic data in the Solomon Sea Basin. Heat flow and bathymetry data support this preferred model.  相似文献   

14.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

15.
Volcanic rocks collected from the Solomon Sea Basin are mostly ferrobasalt lavas similar to evolved MORB; an exception is a single sample of basaltic crystal tuff invaded by later basalt. The rocks contain labradorite, aluminous diopsidic augite, and titanomagnetite, with olivine and pigconite in the more vitrophyric samples, and segregation vesicles in some. Cobbles dredged from Gudaraba Canyon, south of the Solomon Sea Basin, include both MORB-like glassy lava and K-metasomatised basalt and andesite(?). Two small pieces of volcanic glass from the southern Bismarck Sea are more primitive MOR-type basalts.  相似文献   

16.
A geological /geophysical survey of the western Solomon Sea and Manus Basin, northeastern Bismarck Sea, was carried out in 1983-84. The results of the survey and associated studies are reported in this issue and a later issue ofGeo-Marine Letters.  相似文献   

17.
A geological /geophysical survey of the western Solomon Sea and Manus Basin, northeastern Bismarck Sea, was carried out in 1983-84. The results of the survey and associated studies are reported in this issue and a later issue ofGeo-Marine Letters.  相似文献   

18.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

19.
The western Solomon Sea is bounded by the Paleogene collision complex of the Papuan Peninsula to the south, and land masses constructed by Cainozoic volcanism to the north and cast. Oblique collision of two trenches in the western Solomon Sea, and concomitant collision of upper plates, have produced structural complexities that may include the local doubling of crustal thickness, coincident with a strong negative gravity anomaly west of 149°E. Lateral flexing of the subducted plate in the New Britain Trench may have caused flexure of the upper plate; this flexure is expressed in the gravity field, faults, dip-slopes, exposure of basement, and alignment of volcanoes.  相似文献   

20.
In the Celebes Sea Basin the Middle Miocene turbidites were correlated from ODP site 767 throughout the studied area. Differences in their regional thickness variations and distribution indicate two source areas. The Middle Miocene turbidite–fan complexes of the central and southern Celebes Sea Basin are controlled by the paleo-Tarakan delta system, the tectonic events and the basin floor morphology, respectively. The main source area for the time correlative turbidites along the southern Sulu Arc is assumed to be Mindanao.The correlation of the Middle Miocene to Pleistocene sequences exhibit tentative ages for the development of the accretionary wedges along the Cotabato Trench and along the North Sulawesi subduction. A post-Middle Miocene to pre-Pliocene age is inferred for the Cotabato wedge and a Plio-Pleistocene age is assumed for the North Sulawesi wedge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号