首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David H. Scott 《Icarus》1978,34(3):479-485
Stratigraphic relations between lowland plains and highlands, two major types of Martian geologic-terrain units, were not directly distinguishable on Mariner-9 images. Morphologic characteristics and crater densities suggested that the lava plains beneath their eolian cover were younger than adjacent highland rocks, which form a plateau bounded in many places by highly dissected escarpments. Alternatively, the lowland plains could be the older unit and represent a broad erosional surface exhumed by southward retreat of the highlands along their frontal scarp. Viking photos across five areas of the highland-lowland boundary, however, tend to confirm the younger age of the plains-forming lava flows. A time interval of several hundred million years probably occurred between the retreat of the highland scarp and its latest embayment by lava extrusions in the lowlands.  相似文献   

2.
The surface topography of Asteroid 25143 Itokawa is explored using the LIght Detection And Ranging instrument (LIDAR). The data confirm the presence of a rough highland and a smooth lowland. The highland is dominated by boulders, but also possesses topography associated with surface lineaments and broad surface facets. The boulders ensure that the roughness of the highlands over short distances is typically greater relative to most surfaces on 433 Eros. Over larger distances, Itokawa is always smoother than Eros possibly because of its smaller size and weak rubble-pile structure. The lowlands of Itokawa are very smooth, and are typically devoid of boulders. Some transitional regions midway between the highlands and lowlands also exist. In these areas, craters that retain their regolith fill possess flat floors and resemble “ponds” seen on 433 Eros. Analyses of surface elevation, imagery and a quantitative measure of surface roughness are consistent with regolith flowing downhill from the highlands to fill in the low areas of Itokawa, probably covering up any pre-existing rough terrain. Using this interpretation, we find a minimum 2.3±0.4 m thick layer of regolith in the lowlands, which, if spread evenly across the entire asteroid, corresponds to a 42±1 cm thick layer. It is very difficult to generate this amount of regolith with the population of craters seen on Itokawa. However, an Itokawa composed of several large masses may have retained this regolith during its formation. The presence of such large masses could account for the observed lineaments and what appear to be exposures of bedrock on the largest steep slope observed.  相似文献   

3.
A digital terrain model (1000-m effective spatial resolution) of the Caloris basin, the largest well-characterized impact basin on Mercury, was produced from 208 stereo images obtained by the MESSENGER narrow-angle camera. The basin rim is far from uniform and is characterized by rugged terrain or knobby plains, often disrupted by craters and radial troughs. In some sectors, the rim is represented by a single marked elevation step, where height levels drop from the surroundings toward the basin interior by approximately 2 km. Two concentric rings, with radii of 690 km and 850 km, can be discerned in the topography. Several pre-Caloris basins and craters can be identified from the terrain model, suggesting that rugged pre-impact topography may have contributed to the varying characteristics of the Caloris rim. The basin interior is relatively smooth and shallow, comparable to typical lunar mascon mare basins, supporting the idea that Caloris was partially filled with lava after formation. The model displays long-wavelength undulations in topography across the basin interior, but these undulations cannot readily be related to pre-impact topography, volcanic construction, or post-volcanic uplift. Because errors in the long-wavelength topography of the model cannot be excluded, confirmation of these undulations must await data from MESSENGER’s orbital mission phase.  相似文献   

4.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

5.
Eastern Aphrodite Terra and Western Aphrodite form an altimetrically prominent 14,000 km long part of the equatorial highlands on Venus. Several parallel linear discontinuities striking northwest across the general east-west regional strike of the highlands are mapped in the altimetric and radar image data of Eastern Aphrodite and identified on the basis of abrupt termination of rift-like central chasma, offset and segmentation of the center of the highlands, and radar image discontinuities in the lowlands to the north. These characteristics are similar to those of linear discontinuities previously mapped in Western Aphrodite in terms of length, orientation, and influence on the central highlands and adjacent lowlands.Altimetric profiles in directions parallel to the discontinuities are regionally symmetric, more ridge-like in Eastern Aphrodite compared to the plateau-dominated form of topography in Western Aphrodite, and are characterized by alternating paired ridge-and-trough forms near their crests and on their flanks. By mapping the center of symmetry in multiple profiles, the prominent segmentation of the highland is shown to be imparted by an offset of the regional symmetry along the mapped discontinuities. These characteristics are morphologically similar to several of the large-scale characteristics of divergent plate boundaries of Earth, including mid-ocean rise crests and rifts, offset at fracture zones and transform faults, and symmetric thermal boundary layer topography.The altitude of the surface in profiles parallel to the discontinuities decreases as the square root of distance from the symmetry axes and with a slope similar to that predicted for thermal boundary layer topography associated with rates of divergence on Venus of ~ 1 ± 0.5 cm/yr. In order to test the hypothesis that the linear discontinuities are analogous to fracture zones, the predicted altitude of the surface at great distance from the centers of symmetry of the central highland and in directions across the discontinuities was calculated on the basis of a thermal boundary layer topography model with offset of altimetric symmetry at each discontinuity. Similarity of observed Arecibo high-resolution altimetric profiles across the discontinuities with that calculated for thermal boundary layer topography offset by transform faults reveals that in terms of the sense and magnitude of regional steps in altimetry across discontinuities and the altitude of the surface, Eastern Aphrodite is similar to the known characteristics of crustal spreading at divergent boundaries. The plateau-like form of Western Aphrodite and the ridge-like form of Eastern Aphrodite are analogous respectively to the difference between areas of anomalous (Iceland) and normal crustal production along rise crests on Earth. Estimates of volumetric differences in crustal production in the environment of Venus and as it would be influenced by differences in mantle temperature beneath Western and Eastern Aphrodite imply that Eastern Aphrodite represents normal crustal production. On this basis, Western Aphrodite may be characterized by a mantle temperature that is warmer than the mantle beneath Eastern Aphrodite Terra, perhaps in association with deep convective mantle upwelling.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

6.
The main goal of this paper is to estimate the possible composition of the tessera material on the basis of an interpretation of the morphology of the tessera precursor terrain. The results of detailed photogeologic analysis of tessera are presented. For the study, 56 randomly chosen areas that characterize the surface of large and small tessera massifs were selected. Each area represents a portion of the F-MAP photomosaics acquired at a 75 m/px resolution. The results of this study show that the tessera precursor terrain appears everywhere as plains. In its morphology, these plains are similar to the plains outside the tessera massifs. An overview of all possible mechanisms of the formation of plains on Venus and comparison of these mechanisms with the data of the chemical measurements on the surface of Venus suggests that the Venusian plains were formed as a result of the emplacement of low-viscous basaltic lava. This rather well-known conclusion is made here for the first time in order to estimate the possible composition of the tessera material. Thus, it is likely that the composition of the tessera precursor plains is similar to the composition of the basaltic plains on Venus. The products of posttessera volcanism in the form of morphologically smooth plains commonly occur within the tessera terrains. Morphologically, these plains are similar to the regional Venusian plains, which strongly suggests a basaltic composition of such plains. There are only two volcanic flows within the whole tessera terrain on Venus whose morphology permits one to interpret them as a manifestation of nonbasaltic, more siliceous volcanism. This means that the material of the regional tessera-bearing highlands very rarely responded to the thermal influence from below by siliceous volcanism. If some hypothetical granitelike material makes up the main portion of the tessera highlands, this material remains hidden. Therefore, the hypothesis of the granitelike bulk composition of the tessera highlands has little support from observations. At the current stage of the study of Venus, a model in which tessera highlands are composed predominantly of basalt with a possible, but insignificant component of more siliceous material is thought to be correct.  相似文献   

7.
The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites–smectites and chlorite–vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100–300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian unaltered volcanic plains. These plains may correspond to alluvial deposition of eroded material. The highlands of Tyrrhena Terra are therefore particularly well suited for investigating the diversity of hydrated minerals in ancient martian terrains.  相似文献   

8.
The Taurus-Littrow region (Apollo 17 landing area) is located in the northeastern quadrant of the Moon in the mountainous area on the southeastern rim of the Serenitatis basin. The highlands in the Taurus-Littrow region can be divided into three broad terrain types. (1)Littrow massifs - massive, 10-20 km diam, steep-sloped (20°–30°), highland blocks often bordered by linear graben-like valleys. (2)Littrow sculptured hills - a series of closely spaced 1-5 km diam domical hills occupying broad highland plateaus which have been cratered and block faulted. Sculptured hill units stretch along the eastern edge of Serenitatis from the Apollo 17 area north to Posidonius. (3)Vitruvius front and plateau - a long irregular but generally north-trending scarp (occasionally rising over 2 km above the surrounding terrain) and its associated uplifted plateau to the east. This terrain is composed of hills ranging from 2-7 km diam, whose morphology is intermediate between the sculptured hills and the massifs. It is concluded that the highland units in the Taurus-Littrow region are primarily related to the origin of the Serenitatis basin because of their marked similarity to more well-preserved basin-related deposits in the younger Imbrium and Orientale basins: (1) the massifs and sculptured terra are morphologically similar to the Imbrium basin-related Montes Alpes and Alpes Formation, (2) the relative geographic position of the Taurus-Littrow highlands and Montes Alpes/Alpes Formation is the same, forming the second ring and spreading distally, and (3) the structures are similar in orientation and development (e.g., massifs are related to radial and concentric structure; Alpes Formation/sculptured terra are not). Interpretation of the massifs and sculptured hills as Serenitatis impact-related deposits lessens the possible role of highland volcanism in the origin and evolution of the Taurus-Littrow terrain, although extensive pre-Serenitatis volcanism cannot be ruled out. The preserved morphology of the sculptured hills suggests that the thickness of post-Serenitatis large basin ejecta (from Imbrium, for instance) is small, compared to the total highland section. This implies that the primary contributions to the highland stratigraphy are from Serenitatis and pre-Serenitatis events. The highland surface, however, may be dominated by ejecta from the latest nearby large event (formation of the Imbrium basin). Structural elements mapped in the Taurus-Littrow area include lineaments, the Vitruvius structural front, two types of grabens, and scarps. The majority of lineaments, as well as some grabens, appear to be related to a dominant NW trend and subordinate N and NE trends. These trends are interpreted to be related to a more regional lunar grid pattern which formed in the area prior to the origin of the Serenitatis basin, causing distinct structural inhomogeneities in the highland terrain. The Serenitatis event produced radial and concentric structures predominantly influenced by this pre-existing trend. Younger grabens are generally circumferential to the Serenitatis basin and appear to be related to readjustment of Serenitatis-produced structures; those that are oblique to Serenitatis follow the pre-Serenitatis structural grain. No obvious structural elements can be correlated with the post-Serenitatis, Nectaris and Crisium basins. It is believed that the origin and hence the geographic concentration of the Littrow massifs is related to the fact that Serenitatis radials in the massif area coincide with lines of pre-existing structural weakness along a general lunar grid direction (NW). Pre-existing structurally weak lunar grid trends seem to have been structurally reactivated by Serenitatis radials, causing preferential uplift of large blocks in this area. Elsewhere in the region radials would be oblique to this direction. Since Serenitatis and Imbrium radials coincide in the massif area, the post-Serenitatis Imbrium event may have reactivated Serenitatis radial fractures, possibly rejuvenating the massif terrain. The geologic and tectonic history of the Taurus-Littrow highlands began prior to the origin of Serenitatis in Tectonic Interval I. The strong NW trending structural elements are believed to have formed as part of a global stress pattern (possibly shear) sometime during this period of probable crustal formation and fragmentation. Tectonic Interval II was initiated by the origin of the Serenitatis basin. The basic topography and morphology of the region and most large grabens resulted from this event and their orientations show that they were controlled at least in part by the pre-existing grid. No other large basins forming during this interval appear to have had a major effect on the area. Tectonic Interval III is dominated by the formation of narrow grabens following structural patterns circumferential to the Serenitatis basin and tangential to it where they coincide with pre-existing grid directions. Serenitatis isostatic rebound or early mare fill may have produced this stress system. The scarp in the vicinity of the Apollo 17 landing site is the youngest obvious structural element.  相似文献   

9.
New radar images (resolution 1.5–2.0 km) obtained from the Arecibo Observatory are used to assess the geology of a portion of the equatorial region of Venus (1 S to 45 N and from 270 eastward to 30). Nine geologic units are mapped on the basis of their radar characteristics and their distribution and correspondences with topography are examined. Plains are the most abundant unit, make up 80%; of the area imaged, and are divided into bright, dark, and mottled. Mottled plains contain abundant lava flows and domes suggesting that volcanism forming plains is a significant process in the equatorial region of Venus. Tesserae are found primarily on Beta Regio and its eastern flank and are interpreted to be locally stratigraphically older units, predating episodes of faulting and plains formation. Isolated regions of tesserae concentrated to the north of Western Eistla Regio are interpreted to predate the formation of plains in this area. The volcanoes Sif Mons, Gula Mons, Sappho, Theia Mons, and Rhea Mons, are found exclusively in highland regions and their deposits are interpreted as contributing only a small percentage to the overall volume of the regional topography. The northern 15 of the image data overlap with Venera 15/16 images making it possible to examine the characteristics of geologic units mapped under various illumination directions and incidence angles. Surface panoramas and geochemical data obtained from Venera landers provide ground truth for map units, evidence that plains are made up of basaltic lava flows, and that linear deformation zones contain abundant blocks and cobbles. On the basis of spatial and temporal relationships between geologic units, the highlands of Beta Regio and Western Eistla Regio are interpreted to have formed in association with areas of mantle upwelling which uplift plains, cause rifting, and in the case of Beta Regio, disrupt a large region of tessera. Zones of linear belt deformation in Beta Regio and Western Eistla Regio are interpreted to be extensional and indicate that at least limited extension has occurred in both regions. The images reveal for the first time that southern Devana Chasma is a region of overlapping rift valleys separated by a distance of 600 km. Linear deformation zones in Guinevere Planitia, separating Beta Regio and Eistla Regio, converge at a region of ovoids forming a discontinuous zone of disruption and completes an equatorial encompassing network of highlands and tectonic features. The similarity between ovoids and coronae suggests a mechanism of formation associated with hotspots or mantle plumes. Analysis of the distribution and density of impact craters suggests a surface age for this part of the planet similar to or slightly less than that determined for the northern high latitudes from Venera 15/16 data (0.3 to 1.5 by) and comparable to that calculated for the southern hemisphere.  相似文献   

10.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

11.
The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions.The highland–lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally >3km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga).All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or older. The formation ages of volcanic flanks at the HLB (e.g., Alba Mons (3.6–3.4 Ga) and the last fan at Apollinaris Mons, 3.71 Ga) may give additional temporal constraint for the possible existence of any kind of Martian ocean before about 3.7 Ga. It seems to reflect the termination of a large-scale, precipitation-based hydrological cycle and major geologic processes related to such cycling.  相似文献   

12.
Michael Gurnis 《Icarus》1981,48(1):62-75
Improved crater statistics from varied Martian terrains are compared to lunar crater populations. The distribution functions for the average Martian cratered terrain and the average lunar highlands over the diameter range 8–2000 km are quite similar. The Martian population is less dense by approximately 0.70 from 8 to 256 km diameter and diverges to proportionally lower densities at greater diameters. Crater densities on Martian “pure” terra give a lower limit to the Mars/Moon integrated crater flux of 0.75 since the last stabilization of the respective planetary crusts. The crater population >8 km diameter postdating the Martian northern plains is statistically indistinguishable from that population postdating the lunar maria. Monte Carlo simulations were performed to constrain plausible mechanisms of crater obliteration. The models demonstrate that if the crater density difference between the lunar and Martian terra has been due to resurfacing processes, random intercrater plains formation cannot be the sole process. If plains preferentially form in and obliterate larger craters, then the observed Martian distribution retains its “shape” as the crater density decreases. This result is consistent with the morphology of Martian intercrater plains.  相似文献   

13.
Selected Bouguer gravity profiles crossing the highland-lowland boundary of Mars are calculated. Density-depth models are presented for two areas. All profiles show an isostatic behaviour of the ancient highlands and the adjacent lowlands. Especially isostasy must be implied for the area of the escarpment. It is found that the whole Elysium dome is also nearly in isostatic equilibrium. These geophysical results and additional geological investigations imply a combination of subcrustal and minor surface erosion associated with relatively small vertical isostatic movements of the crust (sinking) in former highland areas. These processes caused a retreat of the highland escarpment of at least several hundred kilometers.  相似文献   

14.
We have used Cassini stereo images to study the topography of Iapetus' leading side. A terrain model derived at resolutions of 4-8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50-100 km. Iapetus' prominent equatorial ridge [Porco, C.C., and 34 colleagues, 2005. Science 307, 1237-1242] reaches widths of 70 km and heights of up to 13 km from their base within the modeled area. The morphology of the ridge suggests an endogenous origin rather than a formation by collisional accretion of a ring remnant [Ip, W.-H., 2006. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203]. The transition from simple to complex central peak craters on Iapetus occurs at diameters of 11±3 km. The central peaks have pronounced conical shapes with flanking slopes of typically 11° and heights that can rise above the surrounding plains. Crater depths seem to be systematically lower on Iapetus than on similarly sized Rhea, which if true, may be related to more pronounced crater-wall slumping (which widens the craters) on Iapetus than on Rhea. There are seven large impact basins with complex morphologies including central peak massifs and terraced walls, the largest one reaches 800 km in diameter and has rim topography of up to 10 km. Generally, no rings are observed with the basins consistent with a thick lithosphere but still thin enough to allow for viscous relaxation of the basin floors, which is inferred from crater depth-to-diameter measurements. In particular, a 400-km basin shows up-domed floor topography which is suggestive of viscous relaxation. A model of complex crater formation with a viscoplastic (Bingham) rheology [Melosh, H.J., 1989. Impact Cratering. Oxford Univ. Press, New York] of the impact-shocked icy material provides an estimate of the effective cohesion/viscosity at . The local distribution of bright and dark material on the surface of Iapetus is largely controlled by topography and consistent with the dark material being a sublimation lag deposit originating from a bright icy substrate mixed with the dark components, but frost deposits are possible as well.  相似文献   

15.
As in seen from comparisons of Mariner 9 images obtained in 1972 and Viking Orbiter 1 images obtained in 1978, several changes have occurred in the Cerberus region of Mars. Changes in the boundary of the low albedo feature resulted in an increase of the total area of Cerberus by slightly more than 1%, although the southwestern boundary had shifted as much as 90 km. Relative darkening of Cerberus has resulted in a more uniform tone, and is accompanied by the disappearance of dark filamentary markings. Although several bright streaks within Cerberus changed in length, neither lengthening nor shortening of the streaks predominated. However, changes in streak direction indicate a clockwise rotation of mean streak azimuth between 1972 and 1978. These changes in the outline and appearance of Cerberus can best be explained by eolian redistribution and removal of bright material during major dust storms. Volcanic flow fronts which show through the albedo feature indicate that the contrast between Cerberusand the surrounding light plains is not due to a difference in lithology, but to the distribution of surficial deposits. Because of local topographic influences on the regional atmospheric circulation patterns, it is probable that Cerberus will retain a similar appearance and location.  相似文献   

16.
Stereo analysis of images obtained during the 2001 flyby of Comet Borrelly by NASA's Deep Space 1 (DS1) probe allows us to quantify the shape and photometric behavior of the nucleus. The shape is complex, with planar facets corresponding to the dark, mottled regions of the surface whereas the bright, smooth regions are convexly curved. The photometric as well as textural differences between these regions can be explained in terms of topography (roughness) at and below the image resolution, without invoking significant variations in single-particle properties; the material on Borrelly's surface could be quite uniform. A statistical comparison of the digital elevation models (DEMs) produced from the three highest-resolution images independently at the USGS and DLR shows that their difference standard deviation is 120 m, consistent with a matching error of 0.20 pixel (similar to reported matching accuracies for many other stereo datasets). The DEMs also show some systematic differences attributable to manual versus automatic matching. Disk-resolved photometric modeling of the nucleus using the DEM shows that bright, smooth terrains on Borrelly are similar in roughness (Hapke roughness θ=20°) to C-type asteroid Mathilde but slightly brighter and more backscattering (single-scattering albedo w=0.056, Henyey-Greenstein phase parameter g=−0.32). The dark, mottled terrain is photometrically consistent with the same particles but with roughnesses as large as 60°. Intrinsically darker material is inconsistent with the phase behavior of these regions. Many local radiance variations are clearly related to topography, and others are consistent with a topographic explanation; one need not invoke albedo variations greater than a few tens of percent to explain the appearance of Borrelly.  相似文献   

17.
The principal rock types in the highlands are highland basalt (gabbroic anorthosite) with 28% Al2O3 and low K Fra Mauro basalt with 18% Al2O3. The chemistry of the highland soils and breccias can be represented by simple mixing models involving these rock types as major constituents. The mixing occurred during the intense highland cratering. Layering observed at the Apennine Front is interpreted as produced the Serenitatis basin collision. The plains-forming Cayley Formation and the Descartes Formation are not volcanic, but are derived from pre-existing highland crust.Although the overall chemical composition of the Moon has been affected by pre-accretion processes (e.g. loss of volatile elements), the composition of the highlands is mainly the result of postaccretion melting and element fractionation. Thus the individual rock types show involatile element distribution patterns, relative to primitive abundances, indicative of solid-liquid equilibria, evidence of post-accretion lunar igneous activity.The chemistry of the primitive green glass component (15426) indicates that the abundance of the involatile elements (REE, Ba, Zr, Hf, Th and U) in the source regions is at most only 2–3 times the abundances in chondrites.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

18.
Eileen M. McGowan 《Icarus》2011,212(2):622-628
The largest areal concentration of pitted cones on Mars is located in the southwest section of Utopia basin. This particular area of pitted cones has been attributed to mud volcanism; several factors may have facilitated extensive mud volcanism at this location. The concentration of pitted cones is located where Utopia basin intersects Isidis basin; both features are multi-ring impact basins. On Earth, seismic investigations have shown that the outer rings of the Chicxulub multi-ring impact basin extend to the Mohorovi?i? discontinuity (Moho). If this is true on Mars as well, the fractures could act as conduits for water from Utopia Planitia, the site of a large, putative water body. It has been shown that methane can be generated at the mantle on Earth. On Mars this possible source of methane could combine with the infiltrated water to generate clathrates. While methane is not currently being released at the location of the pitted cones it could have been in the past. Three locations of methane release have been observed on Mars, two of which are located on the same outer ring of Isidis basin that intersects the pitted cone population. The area of Utopia basin that contains the large population of pitted cones is adjacent to the highland/lowland boundary where extensive deposition would have occurred. Extensive deposition combined with the potential for methane release may have contributed to the large population of pitted cones in this area of the Utopia basin.  相似文献   

19.
Analyses of Mars Express OMEGA hyperspectral data (0.4-2.7 μm) for Terra Meridiani and western Arabia Terra show that the northern mantled cratered terrains are covered by dust that is spectrally dominated by nanophase ferric oxides. Dark aeolian dunes inside craters and dark streaks extending from the dunes into the intercrater areas in mantled cratered terrains in western Arabia Terra have similar pyroxene-rich signatures demonstrating that the dunes supply dark basaltic material to create dark streaks. The dissected cratered terrains to the south of the mantled terrains are dominated spectrally by both low-calcium and high-calcium pyroxenes with abundances of 20-30% each retrieved from nonlinear radiative transfer modeling. Spectra over the hematite-bearing plains in Meridiani Planum are characterized by very weak but unique spectral features attributed to a mixture of a dark and featureless component (possibly gray hematite) and minor olivine in some locations. Hydrated minerals (likely hydrous ferric sulfates and/or hydrous hydroxides) associated with poorly ferric crystalline phases are found in the etched terrains to the north and east of the hematite-bearing plains where erosion has exposed ∼1 km of section of layered outcrops with high thermal inertias. These materials are also found in numerous craters in the northern Terra Meridiani and may represent outliers of the etched terrain materials. A few localized spots within the etched terrain also exhibit the spectral signature of Fe-rich phyllosilicates. The ensemble of observations show that the evidence for aqueous processes detected by the Opportunity Rover in Meridiani Planum is widespread and confirms the extended presence of surface or near-surface water over this large region of Mars. The scenarios of formation of Terra Meridiani (“dirty” acidic evaporite, impact surge or weathering of volcanic ash) cannot satisfactorily explain the mineralogy derived from the OMEGA observations. The formation of the etched terrains is consistent with leaching of iron sulfides and formation of sulfates and hydrated iron oxides, either in-place or via transport and evaporation of aqueous fluids and under aqueous conditions less acidic than inferred from rocks examined by Opportunity.  相似文献   

20.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号