首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the intensity modulation in the final, very broad peak of the main outburst of the neutron star low-mass X-ray binary KS 1731-260. We use ASM/RXTE observations for a time-series analysis of the long-term variations. We also investigate the X-ray color (hardness ratio) changes in the 1.5–12 keV band. The modulation with the mean cycle-length of 37 days is transient and is detected only in several time segments. It underwent significant variations of both the cycle-length and the amplitude. This cycle cannot be caused by transitions of the outer disk region between the hot and cool state that gave rise to the subsequent series of the echo outbursts. Because of its high X-ray luminosity (LX  0.1 of the Eddington luminosity), KS 1731-260 is a promising candidate for having its accretion disk tilted and warped. The properties of the modulation can therefore be explained as due to variable (multimodal), but still detectable superorbital periods caused by a disk precession with mode switching and unstable warps. We find that a variable LX is not the sole parameter that governs the presence of the cycle. Variable absorption of X-rays cannot be dominant in producing the modulation of the ASM flux during the cycle. Variations of the stream impact on the tilted and warped disk, hence affecting the mass flow in the inner disk region, consequently the emission components, are a promising mechanism for the observed cycle. In this scenario, the true cycle-length can be twice as long because of the double-wave profile.  相似文献   

2.
《Planetary and Space Science》2007,55(9):1135-1189
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies.At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturn's disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1–2 keV) X-ray observation of Earth's aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles.This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun. Processes of production of solar system X-rays are discussed and an overview is provided of the main source mechanisms of X-ray production at each object. A brief account on recent development in the area of laboratory studies of X-ray production is also provided.  相似文献   

3.
4.
Among evolved massive stars likely in transition to the Wolf–Rayet phase, IRC + 10420 is probably one of the most enigmatic. It belongs to the category of yellow hypergiants and it is characterized by quite high mass loss episodes. Even though IRC + 10420 benefited of many observations in several wavelength domains, it has never been a target for an X-ray observatory. We report here on the very first dedicated observation of IRC + 10420 in X-rays, using the XMM-Newton satellite. Even though the target is not detected, we derive X-ray flux upper limits of the order of 1–3 × 10−14 erg cm−2 s−1 (between 0.3 and 10.0 keV), and we discuss the case of IRC + 10420 in the framework of emission models likely to be adequate for such an object. Using the Optical/UV Monitor on board XMM-Newton, we present the very first upper limits of the flux density of IRC + 10420 in the UV domain (between 1800 and 2250 Å and between 2050 and 2450 Å). Finally, we also report on the detection in this field of 10 X-ray and 7 UV point sources, and we briefly discuss their properties and potential counterparts at longer wavelengths.  相似文献   

5.
We present an analysis of the long-term evolution of outbursts in the neutron star soft X-ray transient GRS 1747–312. Observations taken from ASM/RXTE, in the 1.5–12 keV passband, are utilized. We reveal a cyclic behavior in the residuals of the outburst recurrence time with respect to the mean value of TC = 136 ± 2 days. The profile of this cycle is approximately sinusoidal; the remaining cycle-to-cycle fluctuations possess a considerably smaller amplitude. We find that, although the peak flux of the outbursts displays a significant scatter at a given phase of the cycle, the most luminous outbursts occur after the longest TC. The fluence displays a large scatter for the individual outbursts and tends to decrease with time. We argue that although the cycle-length of ~5.4 yr is compatible with that of the presumed magnetic activity of the late-type donor, it cannot be explained by variations of the mass outflow from the donor to the disk. In our interpretation, the stellar activity is translated to variations of TC via interaction of the magnetic field of the spots on the donor with the magnetic field of the disk. This gives rise to a variable efficiency of the removal of the angular momentum from the quiescent disk during the activity cycle of the donor. This mechanism can be strengthened by accompanying variations of the radius of the optically thin advection-dominated accretion flow in quiescence. We show that the peak mass accretion rate onto the neutron star in the individual outbursts of GRS 1747–312 is considerably more stable than in two other similar systems with frequent outbursts, Aql X-1 and 4U 1608–52; this allows the cyclic modulation of TC to show itself in GRS 1747–312.  相似文献   

6.
Herein, we present the preliminary results of the spectral analysis of the Suzaku data of SW Ursae Majoris (SW UMa) and BZ Ursae Majoris (BZ UMa) which were obtained in their quiescent states. The aim of this study was to analyse 0.5–6.0 keV energy range X-ray photons of the Suzaku satellite and to determine their emission mechanisms and the areas where they were radiated from these two dwarf novae. No study on this energy range for BZ UMa has been reported in the literature. We analysed the Suzaku data in the (0.5–6.0) keV and in (0.5–2.5) keV energy bands of the systems separatelly to search for possible differences between the emission mechanisms in the energy ranges; however, none were found. We obtained the best-fitted spectral models, flux, luminosity, temperature and mass accretion rate values for the systems. The white dwarf radius of BZ UMa, which has not been reported in the literature, was found to be 6.88 × 108 cm. From this study, we concluded that the mass accretion rate values for both systems were lower than the critical mass accretion rate value in the boundary layers of cataclysmic variables, which indicates that the boundary layers are composed of optically thin thermal X-ray emitting gas in their quiescent state; these results support those of previous studies regarding SW UMa and some studies regarding BZ UMa. Another result was that there can be a coronal structure above the boundary layer which act as soft X-ray emitter for SW UMa.  相似文献   

7.
We make a detailed analysis of cross-correlation and time-lag between monthly data of galactic cosmic rays (GCRs) intensity and different solar activity indices (e.g., sunspot number, sunspot area, green coronal Fe line and 10.7 cm solar radio flux) during 19–23 solar cycles. GCRs time-series data from Kiel neutron monitor station and solar data from the last 50 years period, covering five solar cycles (19–23), and alternating solar polarity states (i.e., five A < 0 and four A > 0) have been investigated. We find a clear asymmetry in the cross-correlation between GCRs and solar activity indicators for both odd and even-numbered solar cycles. The time-lags between GCRs and solar parameters are found different in different solar cycles as well as in the opposite polarity states (A < 0 and A > 0) within the same solar cycle. Possible explanations of the observed results are discussed in light of modulation models, including drift effects.  相似文献   

8.
Solar activity, such as flares and CMEs, affect the interplanetary medium, and Earth’s atmosphere. Therefore, to understand the Space Weather, we need to understand the mechanisms of solar activity. Towards this end, we use 1135 events of solar Hα flares and the positional data of sunspots from the archive of Solar Geophysical Data (SGD) for the period January–April, 2000 and compute the abnormal rotation rates that lead to high flare productivity. We report that the occurrence of 5 or more flares in a day in association with a given sunspot group can be defined as high flare productivity and the sunspots that have an abnormal rotation rates of ~4–10 deg day?1 trigger high flare productivity. Further, in order to compare the flare productivity expressed as the strength of the flux emitted, especially the soft X-ray (SXR) flares in the frequency range of 1–8 Å, we compute the flare index of SXR flares and find that 8 out of 28 active regions used in this study satisfy the requirement for being flare productive. This enables us to conclude that the high rotation rates of sunspots are an important mechanism to understand the flare productivity, especially numerical flare productivity that includes flares of all class.  相似文献   

9.
We present an analysis of archival X-ray observations of the Type IIL supernova SN 1979C. We find that its X-ray luminosity is remarkably constant at (6.5 ± 0.1) × 1038 erg s?1 over a period of 12 years between 1995 and 2007. The high and steady luminosity is considered as possible evidence for a stellar-mass (~5–10 M) black hole accreting material from either a supernova fallback disk or from a binary companion, or possibly from emission from a central pulsar wind nebula. We find that the bright and steady X-ray light curve is not consistent with either a model for a supernova powered by magnetic braking of a rapidly rotating magnetar, or a model where the blast wave is expanding into a dense circumstellar wind.  相似文献   

10.
In this work, we report on the intense flaring activity from Mkn-421 in X-ray and γ-ray regimes simultaneously observed by Swift-XRT/BAT and Fermi-LAT satellite telescopes in February 2010. With the aim of understanding the underlying physics of the flaring state in Mkn-421, we have performed a detailed spectral analysis of Swift/XRT and Fermi/LAT observations of Mkn-421 during February 12–25, 2010 (MJD 55239–55252). Over this period, we study the daily light curves and spectral variability of the source in 1–10 keV, 0.1–1 GeV and 1–100 GeV energy bands. We have performed the spectral analysis of Swift-XRT and Fermi/LAT observations to study the spectral evolution in the X-ray and gamma-ray energy domains respectively. We also compute the fractional variability amplitude in both the energy bands during the above period. We study trends between spectral parameters and physical insights provided by the parameter responsible for X-ray and γ-ray emission from the source. We search for energetic features phenomenologically linked to the single zone SSC model for blazar emission. We also produce the broad band SED with a leptonic single zone SSC model for the source.  相似文献   

11.
To ascertain the importance of sputtering by solar wind ions on the formation of a sodium exosphere around Mercury and the Moon, we have irradiated with 4 keV He ions, the Na bearing tectosilicates: albite, labradorite, and anorthoclase, as well as adsorbed Na layers deposited on albite and on olivine (a neosilicate that does not contain Na). Sodium at the surface and near surface (<40 Å) was quantified with X-ray photoelectron spectroscopy before and after each irradiation to determine the depletion cross section. We measured a cross section for sputtering of Na adsorbed on mineral surfaces, σs  1 × 10?15 cm2 atom?1. In addition, mass spectrometric analyses of the sputtered flux show that a large fraction of the Na is sputtered as ions rather than as neutral atoms. These results have strong implications for modeling the sodium population within the mercurian and the lunar exospheres.  相似文献   

12.
《New Astronomy Reviews》2000,44(7-9):511-517
The width of the broad Hβ emission line is the primary defining characteristic of the NLS1 class. This parameter is also an important component of Boroson and Green’s optical “Eigenvector 1” (EV1), which links steeper soft X-ray spectra with narrower Hβ emission, stronger Hβ blue wing, stronger optical Fe II emission, and weaker [O III] λ5007. Potentially, EV1 represents a fundamental physical process linking the dynamics of fueling and outflow with the accretion rate. We attempted to understand these relationships by extending the optical spectra into the UV for a sample of 22 QSOs with high quality soft-X-ray spectra, and discovered a whole new set of UV relationships that suggest that high accretion rates are linked to dense gas and perhaps nuclear starbursts. While it has been argued that narrow (BLR) Hβ means low Black Hole mass in luminous NLS1s, the C IV λ1549 and Lyα emission lines are broader, perhaps the result of outflows driven by their high Eddington accretion rates. We present some new trends of optical-UV with X-ray spectral energy distributions. Steeper X-ray spectra appear associated with stronger UV relative to optical continua, but the presence of strong UV absorption lines is associated with depressed soft X-rays and redder optical–UV continua.  相似文献   

13.
《Astroparticle Physics》2010,33(6):286-293
In the past, there have been reports of the observation of decrease in the flux of secondary cosmic γ-rays during a total solar eclipse. We have measured the flux of secondary cosmic γ-rays during the total solar eclipse that occurred at Novosibirsk in Russia, on 1 August 2008. Highly sensitive measurements were carried out by using a detector system with built-in redundancy. The system consisted of two independent, large volume NaI(Tl) scintillator detectors for sensitive and reliable measurements. The data display significant variability in the flux of secondary γ-rays in the energy range 50–4600 keV. Just prior to the total solar eclipse a change ∼9% in the flux was observed, followed by a small but steady decrease ∼4% during the eclipse. The temporal variation in the observed flux of γ-rays were found to be nearly identical for the two detectors. The energy dependence of the variation was further studied by binning the yield in three energy ranges, namely, 100–200, 200–400 and 400–4600 keV. The nearly identical time variation observed in the two independent measurements provides confidence that the measured variation is real and not an artifact of the instrumentation. Systematic observations during the future eclipses are required to study this fascinating phenomenon which is not yet understood.  相似文献   

14.
Unusual wave activity in the Pc 1–2 frequency band (0.1–5 Hz) was observed by the Cluster spacecraft in association with the two large geomagnetic storms of late 2003. During the onset of the Hallowe’en storm on October 29, 2003, intense broadband activity between ∼0.1 and 0.6 Hz appeared at all 4 spacecraft on both sides of the magnetic equator at perigee (near 1400 UT and 08:45 MLT). Power was especially strong and more structured in frequency in the compressional component: a minimum in wave power was observed at 0.38 Hz, corresponding to the oxygen ion cyclotron frequency. Poynting vector calculations indicated that wave power was primarily directed radially inward rather than along the magnetic field. Narrowband purely compressional waves near 0.15 Hz appeared at higher dayside latitudes in the southern hemisphere. CIS ion spectrometer data during this pass revealed that O+ was the dominant energetic ion. During the recovery phase of the November storm, on November 22, 2003, predominantly transverse 1.8 Hz waves with peak-to-peak amplitude of 10 nT were observed by all four spacecraft near perigee at L=4.4. During this more typical Pc 1 event, wave power was directed along B, toward the northern ionosphere. An unusually polarized 2.3 Hz emission (with power in the radial and compressional, but not azimuthal directions) was observed at L=5.4–5.9, 10–15° south of the magnetic equator. We infer that this wave event may have been generated on lower L shells and propagated obliquely to Cluster's location. Consistent with other recent observations, anisotropic plasma sheet/ring current proton distributions appeared to be a necessary condition for occurrence of waves during both passes, but was not always a sufficient condition. The transverse waves of November 22 occurred in regions which also contained greatly increased fluxes of cool ions (E<1 keV). On both days, Cluster observed features not previously reported, and we note that the purely compressional nature of the October 29 events was not anticipated in previous theoretical studies. The fact that these unusually polarized waves occurred in association with very intense geomagnetic storms suggests that they are likely to be extremely rare.  相似文献   

15.
In this work we present an active Compton scattering polarimeter as a focal plane instrument able to extend the X-ray polarimetry towards hard X-rays.Other authors have already studied various instrument design by means of Monte Carlo simulations, in this work we will show for the first time the experimental measurements of “tagging efficiency” aimed to evaluate the polarimeter sensitivity as a function of energy. We performed a characterization of different scattering materials by measuring the tagging efficiency that was used as an input to the Monte Carlo simulation. Then we calculated the sensitivity to polarization of a design based on the laboratory set-up. Despite the geometry tested is not optimized for a realistic focal plane instrument, we demonstrated the feasibility of polarimetry with a low energy threshold of 20 keV. Moreover we evaluated a minimum detectable polarization of 10% for a 10 mCrab source in 100 ks between 20 and 80 keV in the focal plane of one multilayer optics module of NuSTAR. The configuration used consisted of a doped p-terphenyl scatterer 3 cm long and 0.7 cm of diameter coupled with a 0.2 cm thick LaBr3 absorber.  相似文献   

16.
《Planetary and Space Science》2007,55(12):1741-1756
The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.  相似文献   

17.
《Astroparticle Physics》2009,30(6):366-372
We present results of a search for relativistic magnetic monopoles with the Baikal neutrino telescope NT200, using data taken between April 1998 and February 2003. No monopole candidates have been found. We set an upper limit 4.6 × 10−17 cm−2 s−1 sr−1 for the flux of monopoles with βm = 1. This is a factor of 20 below the Chudakov–Parker bound which is inferred from the very existence of large-scale galactic magnetic fields.  相似文献   

18.
We examine spectral properties of the SDSS quasar J093201.60 + 031858.7, in particular the presence of strong blue peaks in the Balmer emission lines offset from the narrow lines by approximately 4200 km s?1. Asymmetry in the broad central component of the Hβ line indicates the presence of a double-peaked emitter. However, the strength and sharpness of the blue Hβ and blue Hγ peaks make this quasar spectrum unique among double-peaked emitters identified from SDSS spectra. We fit a disk model to the Hβ line and compare this object with other unusual double-peaked quasar spectra, particularly candidate binary supermassive black holes (SMBHs). Under the binary SMBH scenario, we test the applicability of a model in which a second SMBH may produce the strong blue peak in the Balmer lines of a double-peaked emitter. If there were only one SMBH, a circular, Keplerian disk model fit would be insufficient, indicating some sort of asymmetry is required to produce the strength of the blue peak. In either case, understanding the nature of the complex line emission in this object will aid in further discrimination between a single SMBH with a complex accretion disk and the actual case of a binary SMBH.  相似文献   

19.
We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high Civ to Hi ratios, for the first absorber in system A, named A1. This value, together with high column density of Civ ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using cloudy), or a stratified cloud (which was modelled using titan), as well as the solar abundances. This model explained both the ionic column density of Civ and the high Civ to Hi ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010  1012 cm−3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.  相似文献   

20.
From the UCSD OSO-7 X-ray experiment data, we have identified 54 X-ray bursts with 5.1–6.6 keV flux greater than 103 photon cm?2 keV?1 which were not accompanied by visible Hα flare on the solar disk. By studying OSO-5 X-ray spectroheliograms, Hα activity at the limb and the emergence and disappearance of sunspot groups at the limb, we found 17 active centers as likely seats of the X-ray bursts beyond the limb. We present the analysis of 37 X-ray bursts and their physical parameters. We compare our results with those published by Datlowe et al. (1974a, b) for disk events. The distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events. We show that of conduction and radiation, the former is the dominant cooling mechanism for the hot flare plasma. Since the disk and over-the-limb bursts are similar, we conclude that the scale height for X-ray emission in the 5–10 keV range is large and is consistent with that of Catalano and Van Allen (1973), 11000 km, for primarily 1–3 keV emission. Twenty-five or about 2/3 of the over-the-limb events had a non-thermal component. The distribution of peak 20 keV flux is not significantly different from that of disk events. However, the spectral index at the time of maximum flux is significantly different for events over the limb and for events near the center of the disk; the spectral index for over-the-limb events is larger by about δγ = 3/4. If hard X-ray emission came only from localized sources low in the chromosphere we would expect that hard X-ray emission, would be occulted over the limb; on the contrary, the observation show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Thus hard X-ray emission over extended regions is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号