首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An astrophotometer was used for measurements of lunar sky brightness in visible and ultraviolet range during day and night. The data obtained showed unexpectedly high values of brightness during the lunar day in the visible region. From measurements during lunar ‘twilight’ conditions and from the dependence of excessive flux on cosZ⊙ we have concluded that the effect is due to scattering of solar radiation by dust particles above the surface of the Moon. Some evidence in favour of dust clouds around the Moon is presented.  相似文献   

2.
A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.  相似文献   

3.
We propose a modification of the method of polarimetric measurements of the twilight sky, traditionally performed in a zenith direction, to study physical properties of the stratospheric aerosol (at altitudes higher than 30 km). The measurements carried out in zenith directions as a rule limit phase angles by values of 80–100°. We suggest setting up the declination of the telescope equal to the declination of the sun and measuring the polarization degree of the twilight sky at different values of the right ascension. It will allow us not only to enhance the range of the phase angles but also to plan observations in a way to obtain data on the phase dependence of the polarization degree of the light scattered by atmospheric layers at different altitudes.  相似文献   

4.
For the majority of optical observing programmes, the sky brightness provides the fundamental limit to signal detection such that the scientific feasibility is largely dictated by the phase of the Moon. Since most observatories do not have the resources to build expensive high-resolution or infrared instruments, they are increasingly at a loss as to how to exploit bright time. We show that, with due consideration of the field and Moon position, it is possible to undertake 'dark-time' observing programmes under 'bright-time' conditions. Our recommendations are particularly appropriate to all-sky survey programmes.
In certain instances, there are gains in observing efficiency with the use of a polarizer, which can significantly reduce the moonlight (or twilight) sky-background flux relative to an extraterrestrial flux. These gains are possible in background-limited cases because the sky background can be highly polarized, caused by scattering, around 90° away from the Moon (or Sun). To take advantage of this, only minor modifications to existing instruments are needed.  相似文献   

5.
We describe a fast, quadratic power spectrum estimator for cosmic microwave background polarization fields, based on heuristically-weighted correlation functions. The method can handle real-world effects such as inhomogeneous or correlated noise, and arbitrary sky cuts. A significant feature is that the electric and magnetic polarization powers are separated exactly in the mean, even for observations covering only a small region of the sky, and with a negligible increase in computational cost. The method is illustrated with simulations for a large-area survey, and a future, deep magnetic-polarization survey.  相似文献   

6.
Near-infrared linear imaging polarimetry of the young stellar objects R CrA and T CrA in the J , H and K n bands, and circular imaging polarimetry in the H band, is presented. The data are modelled with the Clark and McCall scattering model. The R CrA and T CrA system is shown to be a particularly complex scattering environment. In the case of R CrA there is evidence that the wavelength dependence of polarization changes across the nebula. MRN dust grain models do not explain this behaviour. Depolarization by line emission is considered as an alternative explanation. The dust grain properties could also be changing across the nebula.
Although surrounded by reflection nebulosity, there is a region of particularly low polarization surrounding R CrA that is best modelled by the canonical bipolar outflow being truncated by an evacuated spherical cavity surrounding the star. The symmetry axis of the nebula appears inclined by 50° to the plane of the sky.
The H -band circular polarimetry of R CrA clearly shows a quadrupolar structure of positive and negative degrees of circular polarization that reach peak magnitudes of ∼5 per cent within our limited map. It is shown that spherical MRN grains are incapable of producing this circular polarization given the observed linear polarization of the R CrA system. Instead, scattering from aligned non-spherical grains is proposed as the operating mechanism.
T CrA is a more archetypical bipolar reflection nebula, and this object is modelled as a canonical parabolic reflection nebula that lies in the plane of the sky. The wavelength independence of linear polarization in the T CrA reflection nebula suggests that the scattering particles are Rayleigh sized. This is modelled with the MRN interstellar grain size distribution.  相似文献   

7.
Polarization is the next frontier of cosmic microwave background analysis, but its signal is dominated over much of the sky by foregrounds which must be carefully removed. To determine the efficacy of this cleaning, it is necessary to have sensitive tests for residual foreground contamination in polarization sky maps. The dominant Galactic foregrounds introduce a large-scale anisotropy on to the sky, so it makes sense to use a statistic sensitive to overall directionality for this purpose. Here, we adapt the rapidly computable     statistic of Bunn and Scott to polarization data, and demonstrate its utility as a foreground monitor by applying it to the low-resolution Wilkinson Microwave Anisotropy Probe 3-yr sky maps. With a thorough simulation of the maps' noise properties, we find no evidence for contamination in the foreground cleaned sky maps.  相似文献   

8.
Deep 1–49 cm surveys of the circumzenithal sky area performed using the RATAN-600 radio telescope allowed the spectral index of Galactic synchrotron emission in the 7.6–49 cm wavelength interval to be refined. The data obtained are inconsistent with the model of synchrotron emission adopted to interpret the results of the first year of the WMAP mission, which led to the hypothesis of the early secondary ionization of the Universe at redshifts Z > 10–30. New observations made with the RATAN-600 demonstrated the possibility of deep studies of the intensity and polarization of the microwave background (the E component) in ground-based experiments at short centimeter wavelengths. Galactic synchrotron emission may as well limit the possibilities of space- and ground-based studies of the polarization of cosmic microwave background radiation arising as a result of scattering induced by relic gravitational waves (the B component). The sky area studied with the RATAN-600 is intended to be used to interpret the PLANCK mission data in order to ensure a more detailed account of the role of the Galactic synchrotron emission.  相似文献   

9.
Abstract— Photometric observations of the twilight sky were carried out during Leonids 1998. The obtained vertical distributions of aerosol between 20 and 140 km demonstrate the processes of the intrusion of fine meteor dust and its subsequent intra-atmospheric dynamics. The characteristic radii of two fractions of the meteor dust particles were estimated by their sedimentation velocities. They varied within rp = 0.006–0.06 μm and rp = 19–81 μm limits depending on an assumed particle density within ρp = 0.4–4.0 g cm?3. The assumption of ρp = 2.0 g cm?3 gave radii of the two fractions to be 0.01 and 30 μm, respectively.  相似文献   

10.
Spectropolarimetric observations from 5000 to 8000 Å have been obtained for comets P/Austin (1982g) and P/Churyumov-Gerasimenko (1982f). The observations were spaced over phase angles of 50–125° for comet Austin and 10–40° for comet Churyumov-Gerasimenko. The use of spectropolarimetry allowed an evaluation of continuum polarization without molecular line contamination. Especially for comet Churyumov-Gerasimenko, the curve of polarization versus phase angle resembles curves for asteroids, where the polarization is negative (electric vector maximum parallel to the scattering plane) for phase angles less than 20° and the most negative polarization is from ?1 to ?2%. The negative polarization at backscattering angles may be due to multiple scattering in agglomerated grains, as assumed for asteroids, or to Mie scattering by small dielectric particles. If multiple scattering is important in comet dust, polarization measurements may imply a low albedo, less than 0.08. The polarization of comet Austin remained steady during a large change in the dust production rate. Both comets increased continuum flux by a factor of 2 near perihelion. The continuum of comet Churyumov-Gerasimenko had the shape of the solar spectrum with derivations less than 5%. The equivalent width of spectral features of C2, NH2, and O varied as r?2.  相似文献   

11.
12.
It is suspected that the lunar exosphere has a dusty component dispersed above the surface by various physical mechanisms. Most of the evidence for this phenomenon comes from observations of “lunar horizon glow” (LHG), which is thought to be produced by the scattering of sunlight by this exospheric dust. The characterization of exospheric dust populations at the Moon is key to furthering our understanding of fundamental surface processes, as well as a necessary requirement for the planning of future robotic and human exploration.We present a model to simulate the scattering of sunlight by complex lunar dust grains (i.e. grains that are non-spherical and can be inhomogeneous in composition) to be used in the interpretation of remote sensing data from current and future lunar missions. We numerically model lunar dust grains with several different morphologies and compositions and compute their individual scattering signatures using the Discrete Dipole Approximation (DDA). These scattering properties are then used in a radiative transfer code to simulate the light scattering due to a dust size distribution, as would likely be observed in the lunar exosphere at high altitudes 10's of km. We demonstrate the usefulness and relevance of our model by examining mode: irregular grains, aggregate of spherical monomers and spherical grains with nano-phase iron inclusions. We subsequently simulate the scattering by two grain size distributions (0.1 and radius), and show the results normalized per-grain. A similar methodology can also be applied to the analysis of the LHG observations, which are believed to be produced by scattering from larger dust grains within about a meter of the surface.As expected, significant differences in scattering properties are shown between the analyses employing the widely used Mie theory and our more realistic grain geometries. These differences include large variations in intensity as well as a positive polarization of scattered sunlight caused by non-spherical grains. Positive polarization occurs even when the grain size is small compared to the wavelength of incident sunlight, thus confirming that the interpretation of LHG based on Mie theory could lead to large errors in estimating the distribution and abundances of exospheric dust.  相似文献   

13.
Despite the fact that the physics of the cosmic microwave background anisotropies is most naturally expressed in Fourier space, pixelized maps are almost always used in the analysis and simulation of microwave data. A complementary approach is investigated here, in which maps are used only in the visualization of the data, and the temperature anisotropies and polarization are only ever expressed in terms of their spherical multipoles. This approach has a number of advantages: there is no information loss (assuming a band-limited observation); deconvolution of asymmetric beam profiles and the temporal response of the instrument are naturally included; correlated noise can easily be taken into account, removing the need for additional 'destriping'; polarization is also analysed in the same framework; and reliable estimates of the spherical multipoles of the sky and their errors are obtained directly for subsequent component separation and power spectrum estimation. The formalism required to analyse experiments which survey the full sky by scanning on circles is derived here, with particular emphasis on the Planck mission. A number of analytical results are obtained in the limit of simple scanning strategies. Although there are non-trivial computational obstacles to be overcome before the techniques described here can be implemented at high resolution, if these can be overcome the method should allow for a more robust return from the next generation of full-sky microwave background experiments.  相似文献   

14.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

15.
High linear polarization (up to 5–8%) discovered by our group in the deep minima of isolated AE-Herbig stars is discussed in the framework of the model of zodiacal light produced by scattering matter in a circumstellar dust envelope (probably in protoplanetary discs). The numerical simulations of polarizational and colourimetrical properties of the scattered light based on the Mie theory permit to obtain from the observations some important parameters of circumstellar dust: the size distribution of grains, their rough chemical composition (silicate/graphite), the flatness of the dust envelope.Moreover, the position angle of polarization in deep minima may be used for determination of the symmetry axis projection of circumstellar disc on the sky relative to the direction of local interstellar magnetic field. The latest is important in order to understand the role of the magnetic field at the initial phase of gravitational collapse of protostellar clouds.Finally, the component of linear polarization which is due to the alignment of nonspherical circumstellar grains may be separate from the observed polarization under certain conditions.Paper presented at the 12th European Regional Astronomical Meetings of the IAU European Astronomers Look to the Future, held 8–11 October, 1990 in Davos, Switzerland.  相似文献   

16.
介绍一种利用大视场测光系统对观测天气质量进行评估的统计方法.此方法可以 给出大气透明度、背景天光、视宁度和观测极限星等等多种与天文观测有关的天气质 量参数.通过检验证明,此方法可提供一个天气状况的实时监视方法,对北京天文台 施密特CCD测光系统以及制定观测计划和评估观测质量有重要意义.  相似文献   

17.
The optimum conditions to see the crescent of the new Moon have been obtained at Sacramento Peak and Maryland. We have used the data of the sky twilight brightness given by Koomenet al. (1952) for the two sites. The results show that the crescent can not be seen at the two sites for sun's depression less than 4° and 8° elongation between Sun, Moon and Earth confirming the results obtained before by Asaadet al. (1976). The visibility conditions at Maryland and Sacramento Peak are better than that obtained before for the three sites Misallat, Helwan and Daraw at Egypt. The reason is mainly due to the decrease in the sky twilight brightness at sites having higher geographical northern latitudes and high elevation above sea level.  相似文献   

18.
R. Hellmich  H.U. Keller 《Icarus》1981,47(3):325-332
The problem of visibility of a cometary nucleus discussed in general terms for single scattering by dust grains. The ratio of radiatio scattered in the dust column above the surface and that reflected from the nucleus determines the visibility of features on the nuclear surface. A contrast parameter characterizing the ration of radiation foming from the nuclear surface and that of the nuclear vicinity describes the visibility of the full nucleus against the dust fore- and background. These quantities and the intensity distribution of scattered solar radiation across the nucleus and its vicinity are calculated for the case of comet Halley at a heliocentric distance of 0.9 AU after perihelion (Giotto encounter). The scattering calculations are based on an isotropic dust distribution derived from hydrodynamics gas-dust interactions resulting in a steep densiity increase right above the surface. For Newburn's nominal model of comet Halley, an optical depth of about 0.5 impairs the visibility of the nucleus somewhat.  相似文献   

19.
With a sensitive photoelectric photometer, observations of the sky twilight brightness have been carried out at different positions in the sky during high solar activity period. The measurements have been obtained using blue and red wide band glass filters centered at 4410 and 7900 Å, respectively. The variation of the (B-R) colour index of the sky twilight with Sun's depression have been investigated at different altitudes in the sky above the horizon and various bearing angles from the solar vertical.  相似文献   

20.
The measured sky twilight brightness of a site is believed to be connected with main factors such as geographical latitude, elevation of the site above sea level, the season of observations and the aerosol pollution. These factors may decrease the sky twilight brightness and thus improve the crescent visibility limits. The effect of these factors on the visibility conditions to see the new Moon are investigated in the present work. The results show that the visibility conditions has improved at sites situated at higher northern geographical latitudes and higher elevation above sea level. The conditions to see the new Moon in winter season is better than the summer season. The aerosol pollution has a great effect on the visibility of the new Moon at sun's depression 5°, while for sun's depression greater than 5° the aerosol pollution has a small effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号