首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freezing and thawing processes play an important role for the gravitational transport of surface materials on steep mountain slopes in Japan. The effects of deforestation on frost heave activity were observed through the 2012/2013 winter season in Ikawa University Forest, a southern mountainous area in central Japan (1180–1310 m above sea level). During periods without snow cover, needle ice development prevailed at a clear‐cut site, and the downslope sediment movement of upper soil was 10 to 15 cm through the winter season. At a non‐cut site, rise and fall in the ground surface level prevailed on a weekly scale, with no evident downslope movements at the surface; ice lens formation in the soil layer is assumed. Abrupt changes in the radiation budget, such as the strengthening of nighttime radiative cooling and increases in daytime direct insolation, induced frequent development/deformation of needle ice at the clear‐cut site. In snow‐free periods, the day‐to‐day variability in needle ice growth length and in nighttime averaged net radiation showed significant correlations; cloudy weather with warmer and moist air intrusion associated with synoptic disturbances prevented the occurrence of needle ice. Namely, day‐to‐day weather changes directly affected the mass movement of the upper soil after deforestation. Shallow snow cover occurred discontinuously through the winter and is likely an important factor in keeping the soil moisture sufficiently high in the upper soil layer for initiating needle ice during snow‐free periods. We also discuss contributions of coastal extratropical cyclone activities providing both snow cover and cloudy weather in the southern mountain areas of central Japan to the intra‐seasonal variability in frost heave and its indirect effect on soil creep and landslides on the deforested steep slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes up to ten years of continuous monitoring of frost heave, creep and associated parameters on high mountain crest slopes in the Japanese and Swiss Alps, aiming to evaluate spatial and interannual variations in the rates and controls of soil movement. Shallow frost creep re?ecting diurnal frost heave activity dominates the crest slopes that lack a vegetation mat and have a thin debris mantle with good drainage. Seasonal frost heave activity can induce slightly deeper movement where ?ne soil exists below the depth reached by diurnal freeze–thaw penetration, although the shallow bedrock impedes movements below 20 cm depth. As a result, downslope velocity pro?les display strong concavity with surface velocities of 2–50 cm a?1. The frost creep rates vary spatially, depending on the soil texture, slope gradient, frequency of temperature cycling across 0 °C and moisture availability during freeze–thaw periods. Soil movements recur in every freeze–thaw period, although with some interannual variations affected by the length of seasonal snow cover and the occurrence of precipitation during freeze–thaw periods. The Swiss Alps encounter more signi?cant interannual variations than the Japanese Alps, re?ecting the large variability of the annual snow regime. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Following a previous attempt to reproduce miniature sorted patterns on a level surface, we report the results of a full‐scale laboratory simulation on frost sorting produced by needle ice activity on inclined surfaces. Four models, with different slope gradients (5°, 7°, 9°, 11°), were designed. Stones 6 mm in diameter placed in a grid covered 20% of the surface of frost‐susceptible water‐saturated soil. These models were subjected to 20–40 freeze–thaw cycles between 10°C and ?5°C in 12 hours. The evolution of surface patterns was visually traced by photogrammetry. Needle ice growth and collapse induced downslope movement and concentrations of stones. A model produced incipient sorted circles on a 5° slope, whereas it resulted in three distinct sorted stripes on a 7° slope. The average diameter or spacing of these forms is 9.7–19.4 cm, comparable to those in the field dominated by diurnal freeze–thaw cycles. Surface parallel displacements of stone markers were traced with motion analysis software. The observed downslope stone displacements agree with those expected assuming that surface soil and stones move by repeated heaving perpendicular to the surface and vertical settlement due to gravity, although the growth of curved needle adds complexity to the overall displacements. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Sorted patterned ground is ubiquitous where gravelly fine soil experiences freeze–thaw cycles, but experimental studies have rarely been successful in reproducing such patterns. This article reports an attempt to reproduce miniature sorted patterns by repeating needle‐ice formation, which simulates frost sorting in regions dominated by diurnal freeze–thaw cycles. Six full‐scale laboratory models were tested. They consisted of near‐saturated volcanic fine soil topped by small stones of uniform size; the models explored a range of stone size (~6, ~12, ~17 and ~22 mm) and surface abundance (20, 40 and 60% cover). The stones were placed in a grid on the surface. These models were subjected to 20–30 temperature excursions between 10 °C and ?5 °C in 12 hours. The evolution of surface patterns were visually traced by photogrammetry. A data logging system continuously monitored vertical soil displacements, soil temperatures and moistures at different depths. All experimental runs displayed needle‐ice formation (2–3 cm in height) and resulting displacement of stones. The soil domains tended to heave faster and higher than the stones, leading to outward movement of the former and concentration of the stones. In plan view, smaller stones showed relatively fast and long‐lasting movements, while larger stones stabilized after the first five cycles. The 20% stone cover produced stone islands, whereas the 40% cover resulted in sorted labyrinths (a circle‐island complex) that may represent incipient sorted circles. The average diameter or spacing of these forms are 12–13 cm, being comparable to those in the field. The experiments imply that needle‐ice activity promotes rapid formation of sorted patterns, although the formation of well‐defined sorted circles may require hundreds of diurnal frost heave cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Sorted stripes found on the volcanic scoria and glacial deposits of sub-Antarctic Marion Island indicate a distinct preferred orientation. Despite uniformity of slope and material, the stripes are predominantly aligned parallel to the wind. It is suggested that melting of needle ice by the early morning sun is of only limited importance in the sub-Antarctic owing to the almost continual overcast conditions. The effect of the wind is so great that in exposed situations stripes are formed on horizontal surfaces.  相似文献   

6.
The movement of unconsolidated materials near the Earth's surface is often driven by disturbances that occur at a range of spatial and temporal scales. The nature of these disturbances ranges from highly variable, such as tree turnover, to periodic and predictable, such as frost heave or creep. To explore the effect of probabilistic disturbances on surface processes, we formulated a granular creep model with analogy to rate process theory (RPT) used for chemical reactions. According to the theory, individual particles must be energized to a height greater than adjacent particles in order for grain dilation and transport to occur. The height of neighbouring particles (which is akin to activation energy in chemical reactions) varies with slope angle such that energy barriers get smaller in the downslope direction as slopes steepen. When slopes approach the friction‐limited angle of repose, the height of energy barriers approaches zero and grains ?ow in the absence of disturbance. An exponential function is used to describe the probability distribution of particle excitation height although alternative distributions are possible. We tested model predictions of granular dynamics in an experimental sandpile. In the sandpile, acoustic energy serves as the disturbance agent such that grains dilate and shear in response. Particle velocities are controlled by the frequency of energy pulses that result in grain displacement. Using tracer particles, we observed a convex‐upward velocity pro?le near the surface of the sandpile, consistent with predictions of our RPT‐based velocity model. In addition, we depth‐integrated the velocity model to predict how ?ux rates vary with inclination of the sandpile and observed non‐linear ?ux–gradient curves consistent with model predictions. By varying the acoustic energy level in the experimental sandpile, we documented changes in the rate of grain movement; similar changes in modelled velocities were achieved by varying the exponent of the particle excitation probability distribution. The general agreement between observed and modelled granular behaviour in our simple laboratory sandpile supports the utility of RPT‐based methods for modelling transport processes (e.g. soil creep, frost heave, and till deformation), thus enabling us to account for the probabilistic nature of disturbances that liberate sediment in natural landscapes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In December 2008, 694 trees uprooted within a 108 ha (1·08 km2) watershed in central Massachusetts due to a severe ice storm, resulting in the displacement of ~1300 m3 of root material, unconsolidated sediment, and fractured bedrock. Overall, we find that uprooting and tree throw is often grouped in clusters and cascades; conifers displace more material than deciduous trees; areas with abundant mature hemlock and steep slopes are more susceptible to tree throw, with clusters as dense as 125 per hectare; and failure is predominantly downhill, suggesting that ice storms promote efficient downslope hillslope sediment transport in northern hardwood forests. Combining the recurrence interval of severe storms in New England (20–75 years) with the forest response presented here, we calculate a sediment transport rate of 2–5 × 10?5 m3 m?1 a?1 averaged over the entire watershed. Forest susceptibility to tree throw differed based on location in the watershed; some areas experienced up to ~30× higher than average sediment transport rates, while others experienced no tree throw. Two severe storms following the 2008 ice storm (hurricane in 2011; snow storm in October 2012) did not result in significant tree throw within the study area, highlighting that the coupling of storm severity and forest susceptibility controls the amount of tree throw during a given forest disturbance. In addition to recent tree throw from the 2008 ice storm, widespread pit and mound microtopography in the study area indicates that tree throw is a recurrent process in this landscape. Two factors emerge that will influence future ice storms related hillslope sediment transport in the steep forested hillslopes of New England: regional climate gradients and changing climate determine the size, intensity and recurrence of ice storms; forest management practices and health control the tree age and type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
An experimental slope was constructed in a 5 m × 5 m square refrigerated tank. The slope was formed of four sections, each consisting of regolith (soil) collected from a distinct bedrock lithology. The four lithologies utilized were granite, limestone, mudstone and slate. The slope was subjected to freezing and thawing from the surface downwards. Water was supplied at the base of the soil during freezing. Frost heaving and surface downslope soil movement were determined after each of 15 freezing cycles, and the profiles of soil movement with depth for each soil type were measured at the end of the 15th cycle. The experimental soils were non-cohesive; those derived from granite and limestone were respectively sandy and gravelly in texture, while those derived from mudstone and slate were silt-rich. Mass movement in the granite and limestone soils was due mainly to frost creep and was associated with the growth of needle ice. In the mudstone and slate soils, gelifluction was dominant as a result of high moisture contents caused by the melting of segregation ice. Mean per cycle rates of downslope soil transport for the granite, limestone, mudstone and slate soils were 5·8 cm3 cm?1, 6·9 cm3 cm?1, 21·2 cm3 cm?1 and 31·2 cm3 cm?1 respectively, units referring to the volume of soil passing a unit width of slope per cycle. Mass movement rates were shown to be strongly related to the silt content of the soils.  相似文献   

9.
The geomorphological characteristics of small debris flows in a maritime sub‐Antarctic environment are described. The morphological and sedimentological characteristics of the debris flows are comparable to debris flows documented for other parts of the world; their initiation appears closely linked to the unusual environment in which they are found. Sediment supply is generated by diurnal frost heave of loamy sediment associated with Azorella selago. The debris flows are triggered by sediment mobilization upon saturation of the frost‐heaved surface gravel and overland flow over the low‐permeability and frost‐susceptible slope materials. Morphological effects of the flows are short‐lived due to obliteration by subsequent frost heave activity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports results from two scaled centrifuge modelling experiments, designed to simulate thaw‐related geli?uction. A planar 12° prototype slope was modelled in each experiment, using the same natural ?ne sandy silt soil. However two different scales were used. In Experiment 1, the model scale was 1/10, tested in the centrifuge at 10 gravities (g) and in Experiment 2, the scale was 1/30, tested at 30 g. Centrifuge scaling laws indicate that the time scaling factor for thaw consolidation between model and prototype is N2, where N is the number of gravities under which the model was tested. However, the equivalent time scaling for viscous ?ow is 1/1. If geli?uction is a viscosity‐controlled ?ow process, scaling con?icts will therefore arise during centrifuge modelling of thawing slopes, and rates of displacement will not scale accurately to the prototype. If, however, no such scaling con?icts are observed, we may conclude that geli?uction is not controlled by viscosity, but rather by elasto‐plastic soil deformation in which frictional shear strength depends on effective stress, itself a function of the thaw consolidation process. Models were saturated, consolidated and frozen from the surface downwards on the laboratory ?oor. The frozen models were then placed in the geotechnical centrifuge and thawed from the surface down. Each model was subjected to four freeze–thaw cycles. Soil temperatures and pore water pressures were monitored, and frost heave, thaw settlement and downslope displacements measured. Pore water pressures, displacement rates and displacement pro?les re?ecting accumulated shear strain, were all similar at the two model scales and volumetric soil transport per freeze–thaw cycle, when scaled to prototype, were virtually identical. Displacement rates and pro?les were also similar to those observed in earlier full‐scale laboratory ?oor experiments. It is concluded therefore that the modelled geli?uction was not a time‐dependent viscosity‐controlled ?ow phenomenon, but rather elasto‐plastic in nature. A ?rst approximation ‘?ow’ law is proposed, based on the ‘Cam Clay’ constitutive model for soils. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The complex interactions between rainfall‐driven erosion processes and rainfall characteristics, slope gradient, soil treatment and soil surface processes are not very well understood. A combination of experiments under natural rainfall and a consistent physical theory for their interpretation is needed to shed more light on the underlying processes. The present study demonstrates such a methodology. An experimental device employed earlier in laboratory studies was used to measure downslope rain splash and ‘splash‐creep’, lateral splash, upslope splash and rainfall‐driven runoff transport (wash) from a highly aggregated clay‐rich oxisol exposed to natural rainfall in West Java, Indonesia. Two series of measurements were made: the first with the soil surface at angles of 0°, 5°, 15° and 40°; and the second all at an angle of 5° but with different tillage and mulching treatments. A number of rainfall erosivity indices were calculated from rainfall intensity measurements and compared with measured transport components. Overall storm kinetic energy correlated reasonably well with sediment transport, but much better agreement was obtained when a threshold rainfall intensity (20 mm h?1) was introduced. Rain splash transport measurements were interpreted using a recently developed theory relating detachment to sediment transport. Furthermore, a conceptually sound yet simple wash transport model is advanced that satisfactorily predicted observed washed sediment concentrations. The lack of replication precluded rigorous assessment of the effect of slope and soil treatment on erosion processes, but some general conclusions could still be drawn. The results stress the importance of experiments under conditions of natural rainfall. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This study aims to analyse the environmental controls on soil frost processes in the Western Cape mountains of South Africa. Two microclimatic monitoring stations were established on different substrates at about 1900 m a.s.l. recording air and soil temperature, soil moisture and precipitation over periods of five and two years respectively. Other data available are snow cover estimations and soil textural data. Results show the region to experience surficial diurnal frost only. The frequency of effective frost days in the sandstone areas is extremely limited due to insulation by snow cover and vegetation, effectiveness of the zero-curtain effect and high albedo values of the surface. Irrespective of climatic controls, sandstone-derived sediments are found to be too coarse to develop segregation ice. These strata underlie over 90 per cent of the Western Cape mountains over 1000 m a.s.l. Monitoring on shales indicates 12 and 16 diurnal frost cycles for needle-ice growth for 1993 and 1994, respectively. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
我国是冻土分布大国,寒区铁路轨道普遍遭受地基土冻胀影响。以往的研究偏重地基土的冻胀特征,而对纵向非均匀冻胀变形下铁路与地基土的相互作用关注较少。基于双层弹性地基梁理论,建立铁轨-轨下基础在非均匀冻胀变形作用下的力学模型,给出模型的解析解,结合算例分析夹层弹性系数和冻胀量对轨道位移和内力的影响。结果表明:弹性夹层可以有效减弱铁轨的冻胀变形和应力响应,有利于维护铁轨的运营;铁轨和轨下基础的过渡段长度、凹凸弯折段处的剪力、弯矩随着冻胀位移的增大而增长;夹层弹性系数增大会导致冻胀力对轨下基础的影响逐渐向轨道转移;过渡段的长度只与冻胀量有关。文章提出的计算方法和分析结论可为寒区铁路设计和运营维护提供科学指导。  相似文献   

14.
祁生旺  邓安 《地震学刊》2012,(5):600-605
复合填料是以废铸砂、粉煤灰、聚苯乙烯颗粒(EPS)、水泥和水为原料,拌合后形成的一种轻质填筑材料。其中,EPS颗粒含量适当时,能减少或消除复合填料的冻胀和融沉,可作为季节性冻土区的路基填料。假设复合填料中除EPS颗粒外的骨料颗粒、孔隙冰为刚性介质,同时考虑EPS颗粒变形和填料孔隙变形对复合填料冻结过程的影响,在已有的冻土水热耦合分离冰模型的基础上,得到考虑EPS颗粒变形影响的饱和填料一维冻结水热耦合控制方程,进而预测填料的冻胀量。与室内模型试验结果对比表明,本文模型可用于该种具有弹性颗粒复合填料的冻胀量模拟,为工程中冻胀量预测提供依据。  相似文献   

15.
Runoff and erosion processes can increase after wildfire and post-fire salvage logging, but little is known about the specific effects of soil compaction and surface cover after post-fire salvage logging activities on these processes. We carried out rainfall simulations after a high-severity wildfire and post-fire salvage logging to assess the effect of compaction (uncompacted or compacted by skid traffic during post-fire salvage logging) and surface cover (bare or covered with logging slash). Runoff after 71 mm of rainfall across two 30-min simulations was similar for the bare plots regardless of the compaction status (mean 33 mm). In comparison, runoff in the slash-covered plots averaged only 22 mm. Rainsplash in the downslope direction averaged 30 g for the bare plots across compaction levels and decreased significantly by 70% on the slash-covered plots. Sediment yield totalled 460 and 818 g m−2 for the uncompacted and compacted bare plots, respectively, and slash significantly reduced these amounts by an average rate of 71%. Our results showed that soil erosion was still high two years after the high severity burning and the effect of soil compaction nearly doubled soil erosion via nonsignificant increases in runoff and sediment concentration. Antecedent soil moisture (dry or wet) was the dominant factor controlling runoff, while surface cover was the dominant factor for rainsplash and sediment yield. Saturated hydraulic conductivity and interrill erodibility calculated from these rainfall simulations confirmed previous laboratory research and will support hydrologic and erosion modelling efforts related to wildfire and post-fire salvage logging. Covering the soil with slash mitigated runoff and significantly reduced soil erosion, demonstrating the potential of this practise to reduce sediment yield and soil degradation from burned and logged areas.  相似文献   

16.
Cold room physical modelling of periglacial solifluction processes on an experimental slope of 12° is described, and data on soil temperatures, surface frost heave, thaw consolidation, downslope soil movement and porewater pressures over seven freeze–thaw cycles are presented. These data are analyzed in the context of laboratory determination of the rheometry of the experimental soils at high moisture contents. It is concluded that the observed thaw-induced solifluction represents pre-failure soil shear strain and results from loss of strength due to the combined effects of raised porewater pressures during thaw consolidation and upward seepage pressures as water flows towards the surface away from the thaw front. An investigation of the rheometry of thawing soils offers the prospect of an analytical model to predict rates and depths of periglacial solifluction. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

18.
In cold regions, the response and related antecedent mechanisms that produce flood flows from rainfall events have received limited study. In 2007, a small watershed at Cape Bounty, Melville Island, Nunavut, was studied in detail during the melt season. Two rainfall events on June 30 and July 22, totalling 9·2 and 10·8 mm, respectively, represented significant contributions to seasonal discharge and sediment transport in a year with a low winter snowpack. The precipitation events elevated discharge and suspended sediment concentrations to twice the magnitude of the nival melt, and generated the only measurable downstream lacustrine turbidity current of the season. In two days, rainfall runoff transported 35% of the seasonal suspended sediment load, in contrast to 29% transported over the nival freshet. The magnitude and intensity of the rain events were not unusual in this setting, but the rainfall response was substantial in comparison with equivalent past events. Exceptional temperatures of July 2007 generated early, deep permafrost thaw, and ground ice melt. The resultant increase in soil moisture amplified the subsequent rainfall runoff and sediment transport response. These results demonstrate the importance of antecedent moisture conditions and the role of permafrost active layer development as an important factor in the rainfall runoff and sediment transport response to precipitation events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding natural soil redistribution processes is essential for measuring the anthropogenic impact on landscapes. Although meteoric beryllium-10 (10Be) has been used to determine erosion processes within the Pleistocene and Holocene, fewer studies have used the isotope to investigate the transport and accumulation of the resulting sediment. Here we use meteoric 10Be in hilltop and valley site soil profiles to determine sediment erosion and deposition processes in the Christina River Basin (Pennsylvania, USA). The data indicate natural erosion rates of 14 to 21 mm 10−3 yr and soil ages of 26 000 to 57 000 years in hilltop sites. Furthermore, valley sites indicate an alteration in sediment supply due to climate change (from the Pleistocene to the Holocene) within the last 60 000 years and sediment deposition of at least 0.5–2 m during the Wisconsinan glaciation. The change in soil erosion rate was most likely induced by changes in geomorphic processes; probably solifluction and slope wash during the cold period, when ice advanced into the mid latitudes of North America. This study shows the value of using meteoric 10Be to determine sediment accumulation within the Quaternary and quantifies major soil redistribution occurred under natural conditions in this region. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号