首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Phosphorus (P) loss from agricultural watersheds has long been a critical water quality problem, the control of which has been the focus of considerable research and investment. Preventing P loss depends on accurately representing the hydrological and chemical processes governing P mobilization and transport. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict run‐off and non‐point source pollution transport. SWAT simulates run‐off employing either the curve number (CN) or the Green and Ampt methods, both assume infiltration‐excess run‐off, although shallow soils underlain by a restricting layer commonly generate saturation‐excess run‐off from variable source areas (VSA). In this study, we compared traditional SWAT with a re‐conceptualized version, SWAT‐VSA, that represents VSA hydrology, in a complex agricultural watershed in east central Pennsylvania. The objectives of this research were to provide further evidence of SWAT‐VSA's integrated and distributed predictive capabilities against measured surface run‐off and stream P loads and to highlight the model's ability to drive sub‐field management of P. Thus, we relied on a detailed field management database to parameterize the models. SWAT and SWAT‐VSA predicted discharge similarly well (daily Nash–Sutcliffe efficiencies of 0.61 and 0.66, respectively), but SWAT‐VSA outperformed SWAT in predicting P export from the watershed. SWAT estimated lower P loss (0.0–0.25 kg ha?1) from agricultural fields than SWAT‐VSA (0.0–1.0+ kg ha?1), which also identified critical source areas – those areas generating large run‐off and P losses at the sub‐field level. These results support the use of SWAT‐VSA in predicting watershed‐scale P losses and identifying critical source areas of P loss in landscapes with VSA hydrology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The Soil Conservation Service Curve Number (SCS‐CN) method is a popular rainfall–runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS‐CN is a simple and valuable approach to quantify the total streamflow volume generated by storm rainfall, but its use is not appropriate for estimating the sub‐daily incremental rainfall excess. To overcome this drawback, we propose to include the Green‐Ampt (GA) infiltration model into a mixed procedure, which is referred to as Curve Number for Green‐Ampt (CN4GA), aiming to distribute in time the information provided by the SCS‐CN method. For a given storm, the computed SCS‐CN total net rainfall amount is employed to calibrate the soil hydraulic conductivity parameter of the GA model. The proposed procedure is evaluated by analysing 100 rainfall–runoff events that were observed in four small catchments of varying size. CN4GA appears to provide encouraging results for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, better agreement with the observed hydrographs than the classic SCS‐CN method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Using a large set of rainfall–runoff data from 234 watersheds in the USA, a catchment area‐based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS‐CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS‐CN method showed that the modified version performed better than did the existing one on the data of all seven area‐based groups of watersheds ranging from 0·01 to 310·3 km2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the variation of the popular curve number (CN) values given in the National Engineering Hand Book–Section 4 (NEH‐4) of the Soil Conservation Service (SCS) with antecedent moisture condition (AMC) and soil type. Using the volumetric concept, involving soil, water, and air, a significant condensation of the NEH‐4 tables is achieved. This leads to a procedure for determination of CN for gauged as well as ungauged watersheds. The rainfall‐runoff events derived from daily data of four Indian watersheds exhibited a power relation between the potential maximum retention or CN and the 5‐day antecedent rainfall amount. Including this power relation, the SCS‐CN method was modified. This modification also eliminates the problem of sudden jumps from one AMC level to the other. The runoff values predicted using the modified method and the existing method utilizing the NEH‐4 AMC criteria yielded similar results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Watershed scale hydrological and biogeochemical models rely on the correct spatial‐temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT‐WB) to the original CN‐based SWAT (SWAT‐CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT‐WB than SWAT‐CN [Nash–Sutcliffe efficiencies (NSE) of 0·79 and 0·67, respectively]. In the temperate Catskills, SWAT‐WB and SWAT‐CN predictions were approximately equivalent (NSE > 0·70). The spatial distribution of runoff‐generating areas differed greatly between the two models, with SWAT‐WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Many water quality models use some form of the curve number (CN) equation developed by the Soil Conservation Service (SCS; U.S. Depart of Agriculture) to predict storm runoff from watersheds based on an infiltration-excess response to rainfall. However, in humid, well-vegetated areas with shallow soils, such as in the northeastern USA, the predominant runoff generating mechanism is saturation-excess on variable source areas (VSAs). We reconceptualized the SCS–CN equation for VSAs, and incorporated it into the General Watershed Loading Function (GWLF) model. The new version of GWLF, named the Variable Source Loading Function (VSLF) model, simulates the watershed runoff response to rainfall using the standard SCS–CN equation, but spatially distributes the runoff response according to a soil wetness index. We spatially validated VSLF runoff predictions and compared VSLF to GWLF for a subwatershed of the New York City Water Supply System. The spatial distribution of runoff from VSLF is more physically realistic than the estimates from GWLF. This has important consequences for water quality modeling, and for the use of models to evaluate and guide watershed management, because correctly predicting the coincidence of runoff generation and pollutant sources is critical to simulating non-point source (NPS) pollution transported by runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A procedure combining the Soil Conservation Service‐Curve Number (SCS‐CN) method and the Green–Ampt (GA) infiltration equation was recently developed to overcome some of the drawbacks of the classic SCS‐CN approach when estimating the volume of surface runoff at a sub‐daily time resolution. The rationale of this mixed procedure, named Curve Number for Green–Ampt (CN4GA), is to use the GA infiltration model to distribute the total volume of the net hyetograph (rainfall excess) provided by the SCS‐CN method over time. The initial abstraction and the total volume of rainfall given by the SCS‐CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation. In this paper, a sensitivity analysis of the mixed CN4GA parameters is presented with the aim to identify conditions where the mixed procedure can be effectively used within the Prediction in Ungauged Basin perspective. The effects exerted by changes in selected input parameters on the outputs are evaluated using rectangular and triangular synthetic hyetographs as well as 100 maximum annual storms selected from synthetic rainfall time series. When applied to extreme precipitation events, which are characterized by predominant peaks of rainfall, the CN4GA appears to be rather insensitive to the input hydraulic parameters of the soil, which is an interesting feature of the CN4GA approach and makes it an ideal candidate for the rainfall excess estimation at sub‐daily temporal resolution at ungauged sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In the Soil Conservation Service Curve Number (SCS‐CN) method, the three levels of antecedent moisture condition (AMC) permit unreasonable sudden jumps in curve numbers, which result into corresponding jumps in the estimated runoff. A few recently developed SCS‐CN‐based models obviate this problem, yet they have several limitations. In this study, such a model incorporating a continuous function for antecedent moisture has been presented. It has several advantages over the other existing SCS‐CN‐based models. Its application to a large dataset from US watersheds showed to perform better than the existing SCS‐CN method and the others based on it. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Effective control of nonpoint source pollution from contaminants transported by runoff requires information about the source areas of surface runoff. Variable source hydrology is widely recognized by hydrologists, yet few methods exist for identifying the saturated areas that generate most runoff in humid regions. The Soil Moisture Routing model is a daily water balance model that simulates the hydrology for watersheds with shallow sloping soils. The model combines elevation, soil, and land use data within the geographic information system GRASS, and predicts the spatial distribution of soil moisture, evapotranspiration, saturation‐excess overland flow (i.e., surface runoff), and interflow throughout a watershed. The model was applied to a 170 hectare watershed in the Catskills region of New York State and observed stream flow hydrographs and soil moisture measurements were compared to model predictions. Stream flow prediction during non‐winter periods generally agreed with measured flow resulting in an average r2 of 0·73, a standard error of 0·01 m3/s, and an average Nash‐Sutcliffe efficiency R2 of 0·62. Soil moisture predictions showed trends similar to observations with errors on the order of the standard error of measurements. The model results were most accurate for non‐winter conditions. The model is currently used for making management decisions for reducing non‐point source pollution from manure spread fields in the Catskill watersheds which supply New York City's drinking water. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

When discharge measurements are not available, design of water structures relies on using frequency analysis of rainfall data and applying a rainfall–runoff model to estimate a hydrograph. The Soil Conservation Service (SCS) method estimates the design hydrograph first through a rainfall–runoff transformation and next by propagating runoff to the basin outlet via the SCS unit hydrograph (UH) method. The method uses two parameters, the Curve Number (CN) and the time of concentration (Tc). However, in data-scarce areas, the calibration of CN and Tc from nearby gauged watersheds is limited and subject to high uncertainties. Therefore, the inherent uncertainty/variability of the SCS parameters may have considerable ramifications on the safety of design. In this research, a reliability approach is used to evaluate the impact of incorporating the uncertainty of CN and Tc in flood design. The sensitivity of the probabilistic outcome against the uncertainty of input parameters is calculated using the First Order Reliability Method (FORM). The results of FORM are compared with the conventional SCS results, taking solely the uncertainty of the rainfall event. The relative importance of the uncertainty of the SCS parameters is also estimated. It is found that the conventional approach, used by many practitioners, might grossly underestimate the risk of failure of water structures, due to neglecting the probabilistic nature of the SCS parameters and especially the Curve Number. The most predominant factors against which the SCS-CN method is highly uncertain are when the average rainfall value is low (less than 20 mm) or its coefficient of variation is not significant (less than 0.5), i.e. when the resulting rainfall at the design return period is low. A case study is presented for Egypt using rainfall data and CN values driven from satellite information, to determine the regions of acceptance of the SCS-CN method.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Efstratiadis  相似文献   

11.
Spatial and seasonal variations of curve number (CN) and initial abstraction ratio (λ) in a watershed can result in inaccurate runoff volume estimations when using the US Natural Resources Conservation Service (SCS-CN) method with constant values for these parameters. In this paper, parameters of CN and λ are considered as calibration parameters and the sensitivity of estimated runoff to these parameters using the SCS-CN method is scrutinized. To incorporate the uncertainty associated with CN and λ, fuzzy linear regression (FLR) is applied to derive the relationships of CN and λ with rainfall depth (P) by employing a large dataset of storm events from four watersheds in Iran. Results indicate that the proposed approach provides more accuracy in estimation of runoff volume compared to the SCS method with constant values of CN and λ, and gives a straightforward technique for evaluating the hydrological effects of CN, λ, and P on runoff volume.  相似文献   

12.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The identification of runoff contributing areas would provide the ideal focal points for water quality monitoring and Best Management Practice (BMP) implementation. The objective of this study was to use a field‐scale approach to delineate critical runoff source areas and to determine the runoff mechanisms in a pasture hillslope of the Ozark Highlands in the USA. Three adjacent hillslope plots located at the Savoy Experimental Watershed, north‐west Arkansas, were bermed to isolate runoff. Each plot was equipped with paired subsurface saturation and surface runoff sensors, shallow groundwater wells, H‐flumes and rain gauges to quantify runoff mechanisms and rainfall characteristics at continuous 5‐minute intervals. The spatial extent of runoff source areas was determined by incorporating sensor data into a geographic information‐based system and performing geostatistical computations (inverse distance weighting method). Results indicate that both infiltration excess runoff and saturation excess runoff mechanisms occur to varying extents (0–58% for infiltration excess and 0–26% for saturation excess) across the plots. Rainfall events that occurred 1–5 January 2005 are used to illustrate the spatial and temporal dynamics of the critical runoff source areas. The methodology presented can serve as a framework upon which critical runoff source areas can be identified and managed for water quality protection in other watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this study is to incorporate a time‐dependent Soil Moisture Accounting (SMA) based Curve Number method (SMA_CN) in Soil and Water Assessment Tool (SWAT) and compare its performance with the existing CN method in SWAT by simulating the hydrology of two agricultural watersheds in Indiana, USA. Results show that fusion of the SMA_CN method causes decrease in runoff volume and increase in profile soil moisture content, associated with larger groundwater contribution to the streamflow. In addition, the higher amount of moisture in the soil profile slightly elevates the actual evapotranspiration. The SMA‐based SWAT configuration consistently produces improved goodness‐of‐fit scores and less uncertain outputs with respect to streamflow during both calibration and validation. The SMA_CN method exhibits a better match with the observed data for all flow regimes, thereby addressing issues related to peak and low flow predictions by SWAT in many past studies. Comparison of the calibrated model outputs with field‐scale soil moisture observations reveals that the SMA overhauling enables SWAT to represent soil moisture condition more accurately, with better response to the incident rainfall dynamics. While the results from the modification of the CN method in SWAT are promising, more studies including watersheds with various physical and climatic settings are needed to validate the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Abstract Current research suggests that strategies to control sediment and phosphorus loss from non-point sources should focus on different runoff components and their spatial and temporal variations within the river basin. This is a prerequisite for determining effective management measures for reducing diffuse source pollution. Therefore, non-point source models, especially in humid climatic regions, should consider variable hydrologically active source areas. These models should be able to consider runoff generation by saturated overland flow, as well as Hortonian overland flow. A combination of the hydrological model WaSiM-ETH and the erosion and P-transport model AGNPS was chosen for this study. The models were run in the WaSiM runoff generation mode (Green & Ampt/TOPMODEL or Richards equation approach) and the SCS curve number mode to assess the effect of these different runoff calculation procedures on the dissolved phosphorus yield. A small and a medium-sized river basin, of the area of 1.44 and 128.9 km2, respectively, in central Germany were selected for the investigation. The results show that the WaSiM–AGNPS coupling produces more accurate results than the SCS curve number method. For the spatial distribution, the more physically-based model approach computed a much more realistic distribution of water and phosphorus yield-producing areas.  相似文献   

17.
The objective of this paper is to investigate the variation of geomorphology and runoff characteristics in saturated areas under different partial contributing area (PCA) conditions. Geomorphologic information and hydrologic records from two mid‐size watersheds in northern Taiwan were selected for analysis. The PCA ratio in the watershed during a storm was assumed equal to the ratio of the surface‐flow volume to the direct runoff volume from measured hydrologic data. The extents of PCA regions were then determined by using a topographic‐index threshold. Consequently, the geomorphologic factors in saturated and unsaturated areas could be calculated using a digital elevation model, and these factors could then be linked to a geomorphology‐based IUH model for runoff simulation, which can consider both the surface‐ and subsurface‐flow processes in saturated and unsaturated areas, respectively. The results show that geomorphologic characteristics in the saturated areas vary significantly with different PCA ratios especially for higher order streams. A large PCA ratio results in a sharp hydrograph because the quick surface flow dominates the runoff process, whereas the hydrologic response in a low PCA case is dominated by the delayed subsurface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The Green–Ampt infiltration equation is an incomplete governing equation for rainfall infiltration due to the absence of an inertia term. The estimation of the capillary pressure head at the wetting front is difficult to determine. Thus, a major limitation of the Green–Ampt model is the constant, non‐zero surface ponding depth. This paper proposes an integrated rainfall infiltration model based on the Green–Ampt model and the SCS‐CN model. It achieves a complete governing equation for rainfall infiltration by momentum balance and the water budget based on the Green–Ampt assumption, and uses the curve number from the SCS‐CN method to calculate the initial abstraction, which is used as a basic parameter for the governing equation of the intensity of rainfall loss during the runoff period. The integrated rainfall infiltration model resolves the dilemma for capillary pressure head estimation, overcomes the limitation of constant, non‐zero surface ponding depth, and facilitates the calculation of runoff for individual flood simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The Soil Conservation Service (SCS) curve number (CN) estimates of direct runoff from rainfall for semiarid catchments can be inaccurate. Investigation of the Walnut Gulch Experimental Watershed (WGEW) (Southeastern Arizona) and its ten nested catchments determined that the inaccuracy is due to the original SCS ratio (λ) of 0.2 between initial abstraction and maximum potential retention. Sensitivity analyses indicate that runoff estimation can be very sensitive to the initial abstraction ratio, especially for relatively low rainfall amount and for watersheds covered by deep, coarse, and porous soil, conditions that dominate many semiarid watersheds worldwide. Changing the ratio of initial abstraction to the maximum potential retention to optimal values ranging from 0.01 to 0.53 for different Walnut Gulch catchments improved runoff estimates. The greater the channel area and the finer the soil, the smaller the initial abstraction ratio is. The variation of the initial abstraction ratio for the WGEW is due to the variation of maximum potential retention and initial abstraction, which are channel area and soil‐dependent parameters. The greater the channel area, the higher the maximum potential retention S is, and the coarser the soil, the larger the initial abstraction Ia is. In addition, the effect of initial abstraction ratio on runoff estimation increases with decreasing CN. Thus, impacts of initial abstraction ratio on runoff estimation should be considered, especially for semiarid watersheds where the CN is usually low. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

In humid regions, surface runoff is often generated by saturation-excess runoff mechanisms from relatively small variable source areas (VSAs). However, the majority of the current hydrologic models are based on infiltration-excess mechanisms. In this study, the AGricultural Non-Point Source Pollution (AGNPS) model was used to integrate the VSA concept using topographic wetness index (TWI). Both the original and AGNPS-VSA models were evaluated for a small agricultural field in Ontario, Canada. The results indicate that the AGNPS-VSA model performed better than original model. The AGNPS-VSA model predicted that only the saturated portion of the field with higher TWI values produced runoff, whereas the original AGNPS model showed uniform hydrologic response from the entire field. The results of this study are important for accurately mapping the locations of VSAs. This new model could be a powerful tool in identifying critical source areas for applying targeted best management practices to minimize pollutant loads to receiving waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号