首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our understanding of sea-cliff erosion processes and their response to recent and/or projected environmental changes such as sea-level rise, climate change and anthropogenic development hinges on our ability to quantify sea-cliff retreat rates and their variability through time. Here, we focus on Israel's Mediterranean ‘Sharon’ sea-cliff as a case study for examining the significance of recent short-term (i.e. annual to decadal) cliff-top retreat rates that appear to exceed longer-term rates of ‘background’ (i.e. centennial to millennial) retreat by 1–2 orders of magnitude. We demonstrate that an inherent sampling bias in rate estimates inferred from observation intervals shorter than process episodicity can also explain such a pattern. This potential ambiguity leads to a striking paradox where despite highly accurate and robust documentation of recent cliff-top retreat, such as that obtained from aerial photographs and/or instrumental surveys, the short-term retreat rates of episodically retreating sea cliffs remain poorly constrained. To address this key data gap along the Sharon sea cliff we employed a sediment budget approach that focuses on quantifying the continuous wave scouring of cliff-collapsed material from the shore platform as a rate-limiting process for episodic retreat of the cliff above. We used four high-resolution (0.5 m/pixel) airborne LiDAR data sets acquired between 2006 and 2015 to determine short-term maximum retreat rates of up to ~0.08 m/yr during this nine-year period. These modern retreat rates compare to the cliff's background retreat rate of 0.03 to 0.09 m/yr since the mid-Holocene, as determined herein from multiple geologic and archeological observations. Our results demonstrate that previously reported twentieth century cliff-top retreat rates for this sea cliff, which range up to values of several meters per year, are biased and that sea-cliff erosion rates have not yet been significantly impacted by recent environmental changes in the eastern Mediterranean basin, such as the restriction of sediment supply following emplacement of the Nile's Aswan dam system. © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Sea cliff morphology and erosion rates are modulated by several factors, including rock control that reflects both lithology and rock structure. Erosion is anticipated to preferentially exploit ‘fractures’, broadly meant as any discontinuity in an otherwise continuous medium, where the rock mass is weakest. Unpicking the direct control of such fractures on the spatial and temporal pattern of erosion remains, however, challenging. To analyse how such fractures control erosion, we monitored the evolution of a 400 m-long stretch of highly structured sedimentary cliffs in Socoa, Basque Country, France. The rock is known as the Socoa flysch formation. This formation combines decimetre-thick turbidites composed of repeat triplets of medium to strong calcareous sandstone, laminated siltstones and argillaceous marls. The sequence plunges at 45° into the sea with a shore-parallel strike. The cliffs are cross-cut by two normal and reverse fault families, with 10–100 m alongshore spacing, with primary and secondary strata-bound fractures perpendicular to the bedding, which combined delimit the cliff rock mass into discrete blocks that are exploited by the erosion process. Erosion, and sometimes plucking, of such beds and blocks on the cliff face was monitored using ground-based structure-from-motion (SfM) photogrammetry, over the course of 5.7 years between 2011 and 2017. To compare with longer time change, cliff-top retreat rate was assessed using SfM-orthorectified archive aerial photographs spanning 1954–2008. We show that the 13,250 m2 cliff face released 4500 blocks exceeding 1.45 × 10−3 m3, removing a total volume of 170 m3. This equates to an average cliff erosion rate of 3.4 mm/year, which is slightly slower than the 54-year-long local cliff-top retreat (10.8 ± 1.8 mm/year). The vertical distribution of erosion reflects the height of sea water inundation, where the maximum erosion intensity occurs ca. 2 m above high spring-tide water level. Alongshore, the distribution of rockfall scars is concentrated along bed edges bounding cross-cutting faults; the extent of block detachment is controlled by secondary tectonic joints, which may extend through several beds locally sharing similar mechanical strength; and rockfall depth is always a multiple of bed thickness. Over the longer term, we explain block detachment and resultant cliff collapse as a cycle. Erosion nucleates on readily exploitable fractures but elsewhere, the sea only meets defect-free medium-strong to strong rock slabs offering few morphological features for exploitation. Structurally delimited blocks are quarried, and with sufficient time, carve semi-elliptic scars reaching progressively deeper strata to be eroded. Lateral propagation of erosion is directed along mechanical weaknesses in the bedding, and large episodic collapses affect the overhanging slabs via sliding on the weak marl beds. Collapse geometry is confined to one or several triplets of turbidite beds, but never reaches deeper into the cliff than the eroded depth at the foot. We contend that this fracture-limited model of sea-cliff erosion, inferred from the Socoa site dynamics and its peculiar sets of fractures, applies more broadly to other fractured cliff contexts, albeit with site-specific geometries. The initiation of erosion, the propagation of incremental block release and the ultimate full failure of the cliff, have each been shown to be fundamentally directly controlled by structure, which remains a vital control in understanding how cliffed coasts have changed in the past and will change in the future.  相似文献   

3.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

4.
This paper investigates the processes involved in unconsolidated cliff recession using LiDAR surveys (2005, 2010 and 2013) and aerial photographs (1964–2012) at Pointe‐au‐Bouleau, on the north shore of the St. Lawrence estuary, in eastern Canada. The high lithostratigraphic variability of the sediments allowed for the identification of stratigraphic and lithological variables that explain the evolution of coastal cliffs. Space‐for‐time substitution was also used to assess how lithostratigraphy controls the evolution of emerged glaciomarine coastal cliffs over decadal to centennial timescales. This case study presents new quantitative data that contributes to a better understanding of the role of sediment architecture, stratigraphy and geomorphology on coastal evolution. The methodological approach includes the development of a new conceptual model suitable for identifying erosion on cliff coastlines. The high spatial resolution methodology (<5 cm) used herein demonstrates the need for further research using LiDAR data in order to quantify the processes involved in the evolution of coastal cliffs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Development of a notch at the base of a cliff reduces cliff stability and often induces a collapse. Pleistocene limestone coastal cliffs of elevation 5?m in Kuro‐shima, Ryukyu Islands, have a prominent notch with a depth of 3–4?m at their bases. Around these coastal cliffs, collapses different from previous studies of cliff collapses in the Ryukyu Islands were found; collapses in Kuro‐shima have a horizontal failure surface. The horizontal failure surface, situated at the height of the failure surface corresponding to the retreat point of the notch, is bounded by vertical joints cutting the whole cliff and the reef flat in front of the cliff. Two types of horizontal failure surface were found, triangular and quadrangular; the distinction appears to depend on the angle between the vertical joints and the front face of the cliff. Prior to collapse, these cliffs appear to have been separated from the adjacent cliffs by the development of vertical joints. Consequently, a cliff that will collapse can be identified in advance; cliff instability is strongly dependent on the development of a notch. To study the effect of notch development on cliff collapse, the notch depth at which collapse occurs was calculated using stability analysis. Instability of a cliff increases with notch depth; collapse occurs at the horizontal failure surface when the ratio of the notch depth to the seaward length of the cliff is approximately 0·5–0·7 for a triangular failure surface, and 0·7–0·9 for a quadrangular failure surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Influence of rock mass strength on the erosion rate of alpine cliffs   总被引:1,自引:0,他引:1  
Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Sea stacks are common and striking coastal landforms, but few details are known about how, how quickly, and under what conditions they form. We present numerical and analytical models of sea stack formation due to preferential erosion along a pre‐existing headland to address these basic questions. On sediment‐rich rocky coasts, as sea cliffs erode and retreat, they produce beach sediment that is distributed by alongshore sediment transport and controls future sea cliff retreat rates. Depending on their width, beaches can encourage or discourage sea cliff erosion by acting either as an abrasive tool or a protective cover that dissipates wave energy seaward of the cliff. Along the flanks of rocky headlands where pocket beaches are often curved and narrow due to wave field variability, abrasion can accelerate alongshore‐directed sea cliff erosion. Eventually, abrasion‐induced preferential erosion can cut a channel through a headland, separating it from the mainland to become a sea stack. Under a symmetrical wave climate (i.e. equal influence of waves approaching the coastline from the right and from the left), numerical and analytical model results suggest that sea stack formation time and plan‐view size are proportional to preferential erosion intensity (caused by, for example, abrasion and/or local rock weakness from joints, faults, or fractures) and initial headland aspect ratio, and that sea stack formation is discouraged when the sediment input from sea cliff retreat is too high (i.e. sea cliffs retreat quickly or are sand‐rich). When initial headland aspect ratio is too small, and the headland is ‘rounded’ (much wider in the alongshore direction at its base than at its seaward apex), the headland is less conducive to sea stack formation. On top of these geomorphic and morphologic controls, a highly asymmetrical wave climate decreases sea stack size and discourages stack formation through rock–sediment interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Sediment dynamics below retreating cliffs   总被引:1,自引:0,他引:1  
The retreat of cliffs may constitute the dominant erosional response to base‐level fall in arid settings underlain by horizontally‐bedded sedimentary rock. These vertical cliffs typically loom above a relatively straight bedrock slope (‘plinth’) that is mantled with a thin layer of sediment and perched near the angle of repose. In detail, a plinth consists of a system of quasi‐parallel ridges and channels. We ask how the sediment supplied from a retreating cliff influences the erosion of the plinth hillslopes and channels, and how this affects the rate of cliff retreat. Motivated by field observations and high‐resolution topographic data from two sites in western Colorado, we develop a two‐dimensional (2D), rules‐based numerical model to simulate the erosion of channels draining a plinth and diffusive erosion of the intervening interfluves. In this model, retreat of a cliffband occurs when the height of the vertical cliff exceeds a threshold due to incision by channels on the plinth below. Debris derived from cliff retreat is distributed over the model plinth according to the local topography and distance from the source. This debris then weathers in place, and importantly can act to reduce local bedrock erosion rates, protecting both the plinth and ultimately the cliff from erosion. In this paper, we focus on two sets of numerical model experiments. In one suite, we regulate the rate of rockfall to limit the cliff retreat rate; in most cases, this results in complete loss of the plinth by erosion. In a second suite, we do not impose a limit on the cliff retreat rate, but instead vary the weathering rate of the rockfall debris. These runs result in temporally steady cliff‐plinth forms and retreat rates; both depend on the weathering rate of the debris. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We explore a new method for documenting the long-term retreat rate of seacliffs based on measurements and modeling of 10Be concentration transects across present-day shore platforms. The proposed forward numerical model relies on a scenario of sea-level rise since the last deglaciation, and predicts the shape of 10Be concentration transects as a function of prescribed cliff recession and vertical coastal platform downwearing rates. Two independent transect features allow fitting the long-term recession rate model to field observations: a sharp 10Be concentration drop predicted at the former stationary location of the cliff during the last glacial period ∼100 ka ago, and a characteristic dome shape whose magnitude is directly related to the recession rate of the cliff. A retreating chalk cliff site from the English Channel coast of France, at Mesnil-Val, where the 7 m tidal range broadly exposes the shore platform, was selected to test the proposed method. Although retreat rates were too high to pinpoint the predicted 10Be concentration drop at the last glacial cliff position, the 10Be concentration of the flints sampled across the shore platform is consistent with the expected dome shape. When modeled using the proper tidal range and proposed Holocene sea-level rise history, the 10Be data yield a cliff retreat rate since the mid-Holocene of 11–13 cm/yr. This is consistent with a 30-year-long measurement record, strongly supporting the utility of the 10Be method.  相似文献   

10.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Cliff retreat in northern Boulonnais is described. The distribution of the amount of retreat is related to structural and topographic factors. Both control the runoff–infiltration balance and therefore the mechanical behaviour of the rocks, which determines the modes of failure. The spatial variability of the retreat rate is explained, but predicting the temporal variability of the retreat rate, which is central to risk management, is much more difficult. Rainfall and piezometric surface data enhanced a ‘piston flow’ mechanism during November 2000. The result of its occurrence on the stability of the cliff and conditions of its recurrence are examined with a view to better understanding the rate of recession of coastal cliffs and wiser management of risk. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Previous studies have estimated that coastal cliffs exist on about 80% of the global shoreline, but have not been validated on a global scale. This study uses two approaches to capture information on the worldwide existence and erosion of coastal cliffs: a detailed literature survey and imagery search, and a GIS-based global mapping analysis. The literature and imagery review show coastal cliffs exist in 93% of the combined recognized independent coastal states and non-independent coastal regions worldwide (total of 213 geographic units). Additionally, cliff retreat rates have been quantified in at least one location within 33% of independent coastal states and 15% of non-independent regions. The GIS-based mapping used the near-global Shuttle Radar Topography Mission 3 arc second digital elevation model and Arctic Coastal Dynamics Database to obtain near-global backshore coastal elevations at 1 km alongshore intervals comprising about 1,340,000 locations (81% of the world vector shoreline). Backshore coastal elevations were compared with the mapped distribution of European coastal cliffs to produce a model training set, and this relationship was extended globally to map the likelihood of coastal cliff locations. About 21% of the transects (17% of the world vector shoreline) were identified as mangroves and eliminated as potential cliff locations. The results were combined with estimates of cliff percentages for Greenland and Antarctica from the literature, extending the global coverage to estimate cliff occurrence across 89% of the world vector shoreline. The results suggest coastal cliffs likely exist on about 52% of the global shoreline. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

13.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Concurrent observations of waves at the base of a southern California coastal cliff and seismic cliff motion were used to explore wave–cliff interaction and test proxies for wave forcing on coastal cliffs. Time series of waves and sand levels at the cliff base were extracted from pressure sensor observations programmatically and used to compute various wave impact metrics (e.g. significant cliff base wave height). Wave–cliff interaction was controlled by tide, incident waves, and beach sand levels, and varied from low tides with no wave–cliff impacts, to high tides with continuous wave–cliff interaction. Observed cliff base wave heights differed from standard Normal and Rayleigh distributions. Cliff base wave spectra levels were elevated at sea swell and infragravity frequencies. Coastal cliff top response to wave impacts was characterized using microseismic shaking in a frequency band (20–45 Hz) sensitive to wave breaking and cliff impacts. Response in the 20–45 Hz band was well correlated with wave–cliff impact metrics including cliff base significant wave height and hourly maximum water depth at the cliff base (r2 = 0.75). With site‐specific calibration relating wave impacts and shaking, and acceptable anthropogenic (traffic) noise levels, cliff top seismic observations are a viable proxy for cliff base wave conditions. The methods presented here are applicable to other coastal settings and can provide coastal managers with real time coastal conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Effectively managing and reducing high suspended sediment loads in rivers requires an understanding of the magnitude of major sediment sources as well as erosion and transport processes that deliver excess fine sediments to the channel network. The focus of this research is to determine the magnitude of erosion from tall bluffs, a primary sediment source in the 2880 km2 Le Sueur watershed, Minnesota, USA. We coupled analyses of seven decades of aerial photographs with four years of repeat terrestrial laser scanning (TLS) to determine erosion rates on bluffs. Together, these datasets provide decadal‐scale retreat rates throughout the entire watershed and high‐resolution geomorphic change detection on a subset of bluffs to both constrain erosion rates and document how environmental conditions affect bluff retreat. Erosion rates from aerial photographs and TLS were extrapolated from 243 and 15 measured bluffs, respectively, to all 480 bluffs in the Le Sueur watershed using multiple techniques to obtain estimates of sediment loading from these features at the watershed‐scale. Despite different spatial and temporal measurement scales, the aerial photograph and TLS estimates yielded similar results for bluff retreat rate and total mass of sediment derived from bluffs, with bluffs in the Le Sueur watershed yielding 135 000 ± 39 000 Mg/yr of fine sediment. Comparing this value to the average annual total suspended solids (TSS) load determined from gauging from 2000 to 2010, we determined that bluffs comprise 57 ± 16% of the total TSS load, making bluffs the single most abundant fine sediment source in the basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Large cliff failures involving forward toppling over a basal hinge have occurred on more than half of the plateau edge of Ben Lomond, northeastern Tasmania. This mode of failure, which is readily identified from the columnar structure of the dolerite involved, has affected up to 107 m3 of rock at a time and a total of more than 50 × 106 m3 in all the cases which can still be identified. It represents perhaps the most important form of cliff retreat, amounting to a rate of 0.2 mm yr?1 over the last 100,000 years. Topographic evidence and joint surveys suggest that two different mechanisms have produced the topples on Ben Lomond. One has involved failure in the sediments underlying the dolerite with consequent foundering and cambering of large sections of the plateau edge. This mechanism accounts for relatively few of the Ben Lomond topples, though it includes the largest individual cases. The second mechanism, dominant in most of the topples, involved slab failure in the cliffs. Both modes of failure have been facilitated by vertical weaknesses within the bedrock and both require an initially steep cliff profile. Because of the latter requirement, which is not met on the other mountains of northeastern Tasmania, large-scale topples are found only on Ben Lomond, and only there where glacial steepening of the cliff has been possible. Following the initial failure, topples of both types have migrated downslope by block sliding for distances up to 2 km.  相似文献   

18.
Erosion of volcanic islands ultimately creates shallow banks and guyots, but the ways in which erosion proceeds to create them over time and how the coastline retreat rate relates to wave conditions, rock mass strength and other factors are unclear. The Capelinhos volcano was formed in 1957/58 during a Surtseyan and partly effusive eruption that added an ~2.5 km2 tephra and lava promontory to the western end of Faial Island (Azores, central North Atlantic). Subsequent coastal and submarine erosion has reduced the subaerial area of the promontory and created a submarine platform. This study uses historical information, photos and marine geophysical data collected around the promontory to characterize how the submarine platform developed following the eruption. Historical coastline positions are supplemented with coastlines interpreted from 2004 and 2014 Google Earth images in order to work out the progression of coastline retreat rate and retreat distance for lava- and tephra-dominated cliffs. Data from swath mapping sonars are used to characterize the submarine geometry of the resulting platform (position of the platform edge, gradient and morphology of the platform surface). Photographs collected during SCUBA and ROV dives on the submarine platform reveal a rugged surface now covered with boulders. The results show that coastal retreat rates decreased rapidly with time after the eruption and approximately follow an inverse power-law relationship with coastal retreat distance. We develop a finite-difference model for wave attenuation over dipping surfaces to predict how increasing wave attenuation contributed to this trend. The model is verified by reproducing the wave height variation over dipping rock platforms in the UK (platform gradient 1.2° to 1.8°) and Ireland (1.8°). Applying the model to the dipping platform around Capelinhos, using a diversity of cliff resistance predicted from known lithologies, we are able to predict erosion rate trends for some sectors of the edifice. We also explore wider implications of these results, such as how erosion creates shallow banks and guyots in reef-less mid-oceanic archipelagos like the Azores. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, we explored the spatial and temporal relations between boulders and their original in-situ locations on sandstone bedrock cliffs. This was accomplished by combining field observations with dating methods using cosmogenic isotopes (10Be and 14C) and optically stimulated luminescence (OSL). Our conclusions bear both on the landscape evolution and cliff retreat process in the hyperarid region of Timna and on the methodology of estimating exposure ages using cosmogenic isotopes.

We recognize three discrete rock fall events, at 31 ka, 15 ka, and 4 ka. In this hyperarid region, the most plausible triggering mechanism for rock fall events is strong ground acceleration caused by earthquakes generated by the nearby Dead Sea fault (DSF). Our record, however, under represents the regional earthquake record implying that ongoing development of detachment cracks prior to the triggering event might be slower than the earthquake cycle.

Cliff retreat rates calculated using the timing of rock fall events and estimated thickness of rock removed in each event range between 0.14 m ky− 1 and 2 m ky− 1. When only full cycles are considered, we derive a more realistic range of 0.4 m ky− 1 to 0.7 m ky− 1. These rates are an order of magnitude faster than the calculated rate of surface lowering in the area. We conclude that sandstone cliffs at Timna retreat through episodic rock fall events that preserve the sharp, imposing, landscape characteristic to this region and that ongoing weathering of the cliff faces is minor.

A 10%–20% difference in the 10Be concentrations in samples from matching boulder and cliff faces that have identical exposure histories and are located only a few meters apart indicates that cosmogenic nuclide production rates are sensitive to shielding and vary spatially over short distances. However, uncertainties associated with age calculations yielded boulder and matching cliff face ages that are similar within 1 σ . The use of external constraints in the form of field relations and OSL dating helped to establish each pair's age. The agreement between calculated 14C and 10Be ages indicates that the accumulation of 10Be at depth by the capture of slow deep-penetrating muons was properly accounted for in the study.  相似文献   


20.
The aim of this study is to quantify the long-term (54 years) rates of marsh extension and retreat at two sites in the Westerschelde Estuary, SW Netherlands. Nine sets of aerial photographs were obtained for each of the two salt marsh sites, Zuidgors and Waarde, taken at various times between 1944 and 1998. The seaward edges of the marshes were digitised from rectified images after the photographs had been scanned and georegistered to the Dutch National Grid. Comparison of the extents of the marshes at these nine time points revealed that the areas of both marshes had fluctuated during these 54 years with periods of both extension and retreat of the seaward marsh edges. These periods of extension and retreat appeared to be approximately synchronised until the 1990s, with mean changes in position of marsh front ranging from −7.92 to 6.04 m a−1.The rate of landward retreat and seaward extension of the marsh front is shown to be related to an increase in the tidal prism brought about by dredging operations to maintain or increase the depth of the main navigable channel of the estuary. The consequent greater frequency with which the high tides reach the edge of the fringing marshes increases the risk of erosion. Strong westerly winds may also be a factor in increasing erosion. No relationship between the volume of shipping traffic using the estuary and marsh erosion was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号