首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Step–pool morphology characterizes many high‐gradient streams in a variety of natural settings, but formative processes and evolutionary dynamics are still poorly understood. In this paper, natural step–pool geometry is compared with steep alluvial channels where grade‐control structures such as check‐dams and bed sills make the stream profile resemble a natural stepped stream. Along these channels, local scouring due to falling jets forms plunge pools under each structure, analogous to natural steps determining the formation of pools. In order to test the hypothesis that natural pools are analogous to pools formed below grade‐control works with respect to their dimensions, shape and formative dynamics, 37 natural pools and 73 artificial pools were surveyed in 10 mountain streams of the eastern Italian Alps. Pools below grade‐control works featured a transitional zone between the scour hole and the downstream sloping bed, marked by a depositional berm. When geometric parameters such as maximum pool depth, length and step–berm distances are normalized to the jet virtual energy, no statistically significant differences were detected between natural and artificial systems. These results lend support to an upstream‐forced cascade model for step–pool formation, where the energy of falling jets controls the geometry of the pools, and is therefore regarded as the most important scaling‐independent variable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper a modelling approach is presented to predict local scour under time varying flow conditions. The approach is validated using experimental data of unsteady scour at bed sills. The model is based on a number of hypotheses concerning the characteristics of the flow hydrograph, the temporal evolution of the scour and the geometry of the scour hole. A key assumption is that, at any time, the scour depth evolves at the same rate as in an equivalent steady flow. The assumption is supported by existing evidence of geometrical affinity and similarity of scour holes formed under different steady hydraulic conditions. Experimental data are presented that show the scour hole development downstream of bed sills due to flood hydrographs follow a predictable pattern. Numerical simulations are performed with the same input parameters used in the experimental tests but with no post‐simulation calibration. Comparison between the experimental and model results indicates good correspondence, especially in the rising limb of the flow hydrograph. This suggests that the underlying assumptions used in the modelling approach are appropriate. In principle, the approach is general and can be applied to a wide range of environments (e.g. bed sills, step‐pool systems) in which scouring at rapid bed elevation changes caused by time varying flows occurs, provided appropriate scaling information is available, and the scour response to steady flow conditions can be estimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The local scouring downstream of bed sills forming a sequence for bed stabilization in steep channels has been investigated in a laboratory flume. The initial bed slopes ranged from 0·078 to 0·148. The bed alluvium was characterised by a non‐uniform grain size distribution. The results show that when the ratio between the critical water depth hc and the sill spacing L rises above a characteristic value the scouring dynamics become heavily affected by the presence of the downstream sill, associated with the onset of a form of “interference” which renders the scouring process less effective. The difference with an “undisturbed” case is demonstrated. Self‐affinity of scour holes is confirmed and the scour length appears to be the reference parameter from which the scour depth might be evaluated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The stability of the pool–rif?e sequence is one of the most fundamental features of alluvial streams. For several decades, the process of velocity, or shear stress, reversal has been proposed as an explanation for an increase in the amplitude of pool–rif?e sequence bars during high ?ows, offsetting gradual scour of rif?es and deposition in pools during low ?ows. Despite several attempts, reversal has rarely been recorded in ?eld measurements. We propose that, instead of being reversed, maxima and minima in shear stress are phase‐shifted with respect to the pool–rif?e sequence bedform pro?le, so that maximum shear stress occurs upstream of rif?e crests at high ?ow, and downstream at low ?ow. Such phase‐shifts produce gradients of shear stress that explain rif?e deposition, and pool scour, at high ?ow, in accord with sediment continuity. The proposal is supported by results of a one‐dimensional hydraulic model applied to the surveyed bathymetry of a pool–rif?e sequence in a straight reach of a gravel‐bed river. In the sequence studied, the upstream phase‐shift in shear stress at high ?ow was associated with variations in channel width, with width minima occurring upstream of rif?e crests, approximately coincident with shear stress maxima, and width maxima occurring downstream of rif?e crests. Assuming that the width variation is itself the result of ?ow de?ection by rif?e crests at low ?ow, and associated bank‐toe scour downstream, low and high ?ow can be seen to have complementary roles in maintaining alluvial pool–rif?e sequences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper summarizes measurements of velocity along three reaches of a small mountain channel with step–pool bedforms. A one‐dimensional electromagnetic current meter was used to record velocity fluctuations at 37 fixed measurement points during five measurement intervals spanning the peak of the annual snowmelt hydrograph. Measurement cross‐sections were located upstream from a bed‐step, at the step lip, downstream from the step, and in a uniform‐gradient run. Data analyses focused on characteristics of velocity profiles, and on correlations between velocity characteristics and the potential control variables bedform type, reach gradient and flow depth. To test the hypothesis that velocity characteristics are related to channel bedform types, ANOVA and ANCOVA tests were performed for the average velocity and coefficient of variation of point velocity data. Results indicate that high frequency velocity variations correlate to some degree with both channel characteristics and discharge. Velocity became more variable as stage increased, particularly at low‐gradient reaches with less variable bed roughness. Velocity profiles suggest that locations immediately downstream from bed‐steps are dominated by wake turbulence from mid‐profile shear layers. Locations immediately upstream from steps, at step lips, and in runs are dominated by bed‐generated turbulence. Adverse pressure gradients upstream and downstream from steps may be enhancing turbulence generation, whereas favourable pressure gradients at steps are suppressing turbulence. The bed‐generated turbulence and skin friction of runs appear to be less effective energy dissipators than the wake‐generated turbulence and form drag of step–pool bedforms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A better understanding of bedrock incision mechanisms and processes is essential to the study of long‐term landscape evolution. Yet, little is known about flow dynamics in bedrock rivers, limiting our ability to make realistic predictions of local bedrock incision rates. A recent investigation of flow through bedrock canyons of the Fraser River revealed that plunging flows, defined by the downward‐directed movement of near surface flow toward the channel bed, occur in channels that have low width‐to‐depth ratios. Plunging flows occur into deep scour pools, which are often coincident with lateral constrictions and channel spanning submerged ridges (sills). A phenomenological investigation was undertaken to reproduce the flow fields observed in the Fraser canyons and to explore morphological controls on the occurrence and relative strength of plunging flow in bedrock canyons. Our observations show that the plunging flow structure can be produced along a scour pool entrance slope by accelerating the flow at the canyon entrance either over submerged sills or through lateral constrictions. Plunging flow appears to be a function of convective deceleration into a scour pool which can be enhanced by sill height, the amount of the channel width that is constricted, pool entrance slope, discharge, and a reduction in channel width‐to‐depth ratio. Plunging flow greatly enhances the potential for incision to occur along the channel bed and is an extreme departure from the assumptions of steady, uniform flow in bedrock incision models, highlighting the need for improved formulations that account for fluid flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This study examines the spatial distributions of third‐order moments of velocity fluctuations, the turbulent kinetic energy (TKE) fluxes, and the conditional statistics of Reynolds shear stress across the equilibrium crescentic scour structures generated upstream of short horizontal static cylinders. Detailed velocity data were collected using three‐dimensional (3D) micro‐acoustic Doppler velocimeter (ADV) across and within the equilibrium scour marks. The analysis reveals that the positive and negative values of third‐order moments associated with the level bed surface and the scour holes are directly related to coherent structures. The components of TKE flux are discussed for the near‐bed region of the level bed surface and scour holes in relation to sweep–ejection events. A cumulant‐discard method is applied to the Gram‐Charlier probability distribution of two variables to describe the statistical properties of the term u′w′. The conditional statistics of the Reynolds shear stress show a good agreement with the experimental data. The distribution of the joint probability density function in the near‐bed region changes cyclically along the scour hole depending on the bottom fluid velocity, which implies a change from upward to downward flux of momentum and vice versa. Both the ejection and sweep events at near‐bed points on the level surface are more important than within the scour region; and in contrast, both events are stronger for the scour marks than the level bed surface at the outer layer. Sweeps dominate over ejections for the scour hole induced by smaller diameter and ejections dominate for larger diameter. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of this study is to develop landslide susceptibility analysis techniques using an arti?cial neural network and to apply the newly developed techniques to the study area of Yongin in Korea. Landslide locations were identi?ed in the study area from interpretation of aerial photographs, ?eld survey data, and a spatial database of the topography, soil type and timber cover. The landslide‐related factors (slope, curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter) were extracted from the spatial database. Using those factors, landslide susceptibility was analysed by arti?cial neural network methods. The landslide susceptibility index was calculated by the back‐propagation method, which is a type of arti?cial neural network method, and the susceptibility map was made with a geographic information system (GIS) program. The results of the landslide susceptibility analysis were veri?ed using landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide location. A GIS was used to ef?ciently analyse the vast amount of data, and an arti?cial neural network to be an effective tool to maintain precision and accuracy. The results can be used to reduce hazards associated with landslides and to plan land use and construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

11.
In this paper, the morphology of step–pool features is analysed using rill measurements and literature data for streams. Close-range photogrammetry was used to carry out ground measurements on rills with step–pool units, shaped on a plot having slope equal to 14, 15, 22, 24 and 26%. Data were used to compare the relationships between H/L, in which H is the step height and L is the step length, and the mean gradient of the step–pool sequence, Sm, for streams or the slope of the step–pool unit, S, for rills. The relationship of H/L against Sm is widely used to test the occurrence of the maximum flow resistance condition in streams, which is associated with the range 1 ≤ (H/L)/Sm ≤ 2. Further analyses were carried out to compare both the formation process and the profile of the pool in rills with those related to streams. Moreover, for a single rill channel, an analysis of flow characteristics expressed in terms of Darcy–Weisbach friction factor and Froude number was developed. The results allowed us to state: (i) the relationships of H/L versus Sm and S are quite similar and the steepness ratio for streams, (H/L)/Sm, and for rills, (H/L)/S, generally ranges from 1 to 2; (ii) the formation process and the profile of the pool in rills are not consistent with those occurring in streams; (iii) in the rills, the longitudinal size of the pool is dominant with respect to the maximum scour depth; (iv) the presence of a sequence of step–pool units within a rill segment noticeably increases flow resistance compared to segments with a flat bed; (v) the Froude number of the flow over the sequence of step–pool units in rills is slightly below the range of 0.8–1 corresponding to the maximum flow resistance in step–pool units.  相似文献   

12.
Flume experiments have been carried out to study the formation processes and the bed morphology of step–pool channels. From the experiments different step types and step configurations could be distinguished depending on the stream power. These step types can be seen as an image of the generation mechanisms of step–pool systems. These results suggest that the bed roughness geometry develops towards a condition that provides the maximum possible bed stability for a given grain size distribution. In contrast to a variety of other studies, antidunes did not contribute to the generation of the step structures. However, the data of the presented study fits well into the region of antidune formation proposed by Kennedy for sand‐bed rivers. This observation points out that step–pool field‐data located in the Kennedy region do not inevitably prove that antidunes played a role in step development. It is rather proposed that in Kennedy's region of antidune formation there exist hydraulic conditions where the flow resistance is maximized. It is suggested that such maximum flow resistance is associated with an optimal distance between the bedforms and their height, independently of whether these are antidunes in sand‐ and gravel‐bed rivers or step–pool units in boulder‐bed streams. The considerations of the Kennedy region of antidune formation and the analysis of planform step types depending on stream power both suggest that steep channels have a potential for self‐stabilization by modifying the step–pool structure towards a geometry that provides maximum flow resistance and maximum bed stability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment transport in the Erlenbach, a small stream with step‐pool morphology in the canton of Schwyz, Switzerland, has been monitored for more than 20 years. During this time three exceptional events (events with high sediment yield and long return times that have a large effect on channel morphology) have impacted the stream and partly or completely rearranged the existing step‐pool morphology. In the aftermath of the events, sediment transport rates at a given discharge and total sediment yield remained elevated for about a year or longer. For the last event, dated on the 20 June 2007, observations of boulder mobility and step destruction were used to interpret channel stability. Boulders with median diameters of up to 135 cm and estimated weights of more than 2·5 tons have moved during the 2007 event. Using hydraulic observations and shear stress calculations boulders up to 65 cm in diameter were predicted to have been fully mobile in peak conditions, even if form resistance and increased critical stresses needed for the initiation of motion in steep streams were taken into account. For two of the events, estimated peak shear stresses at the bed exceeded 1000 Pa, calculated both from observations of the flow hydraulics and from boulder mobility. This suggests that highly energetic flows occur relatively frequently in small, steep streams and that large boulders can be transported by fluvial processes in such streams. The observations have potential significance for hazard risk mitigation, stream engineering and restoration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
While the stabilizing function of large grains in step‐pool streams has long been recognized, the role they play in gravel‐bed streams is less clear. Most researchers have ignored the role of large grains in gravel‐bed streams, and have assumed that the median bed surface size controls the erodibility of alluvial boundaries. The experiments presented herein challenge this convention. Two experiments were conducted that demonstrate the significant morphodynamic implications of a slight change to the coarse tail of the bed material. The two distributions had the same range of particle sizes, and nearly identical bulk d50 values (1.6 mm); however the d90 of experiment GSD1 was slightly finer (3.7 mm) than that for experiment GSD2 (3.9 mm). Transport rates during GSD1 were nearly four times greater than during GSD2 (even though the dimensionless shear stress was slightly lower), and the channel developed a sinuous pattern with well‐developed riffles, pools and bars. During GSD2 the initial rectangular channel remained virtually unchanged for the duration of the experiment. The relative stability of GSD2 seems to be associated with a slightly larger proportion of stable (large) grains on the bed surface: at the beginning of GSD1, 3.5% of the bed was immobile, while almost twice as much of it (6.1%) was immobile at the beginning of GSD2. The results demonstrate that the largest grains (not the median size) exert first‐order control on channel stability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Longitudinal velocity patterns and bed morphology interaction in a rill   总被引:2,自引:0,他引:2  
Present‐day understanding of rill dynamics is hampered by a lack of detailed data on velocity distributions in rills. The latter are dif?cult to collect with traditional techniques due to the very low water depths and the relatively high ?ow velocities in rills. The objectives of this paper were to investigate the feasibility of miniaturized acoustic Doppler velocimeter (mADV) measurements in rill ?ow and to explore longitudinal variations in ?ow velocities and their relationship with rill bed morphology. Detailed data on longitudinal ?ow velocity were required to achieve these objectives. A 1·8 m long rill was formed freely in a ?ume at 5° slope and 0·001 m3 s?1 discharge. Rill topography was characterized by an alternation of steps and pools. The ?ume surface was then ?xed to preserve rill roughness. A topographical scanning of the entire ?ume surface was made. Velocity was measured with a mADV along the rill, and at different depths. Flow depth in a longitudinal direction was also measured using an elevation gauge. A strong relationship exists between rill topography and ?ow hydraulics. Over steps, ?ow was unidirectional and rapidly accelerating until a threshold Froude number (Fn) value between 1·3 and 1·7 was reached and a hydraulic jump occurred leading to the formation of a pool. In the pool, the ?ow pattern was multidirectional and complex. The ?ow was subcritical when leaving the pool and accelerated over the next step until the threshold Froude number value was again reached. Energy loss in the rill was concentrated in the pools, mainly due to the action of a hydraulic jump. This mechanism of energy dissipation appeared to be an essential factor in rill formation and bedform evolution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A critical concern regarding river bed stabilization and river engineering is the short‐term general scour that occurs in a field setting far from a river‐crossing structure or embankment during a typhoon‐induced flood. This study investigated the improvement of existing techniques that have been used to measure river bed scour. One of these techniques is the numbered‐brick column or scour chains method, in which only the maximum general scour depth of river bed is observed. A wireless tracer for monitoring real‐time scour was set‐up with a numbered‐brick column and was employed to collect synchronous data. The proposed method was successfully used to observe both real‐time scour and the maximum depth at flood peak. This observation was conducted at a steep gravel‐bed reach of the Shuideliaw Embankment on the intermittent Choshui River in Central Taiwan during Typhoon Soulik, which occurred in 2013. Future studies must be conducted to complete the development of an automatic real‐time scour and flood monitoring system for use in severe weather and flow conditions; this would facilitate the identification of river bed scour during conditions of unstable flow and the improvement of flood prevention engineering, bridge closure detection and emergency evacuation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e. step pools and riffle pools) and semialluvial morphologies (i.e. boulder cascades and forced step pools) on bedload entrainment and transport. Results indicate that dynamics of bedload entrainment are influenced by differences in flow resistance attributable to morphology. Scaled fractional analysis shows that in reaches with high form resistance most bedload transport occurs in partial mobility fashion relative to the available bed material, while calibers finer than 16 mm attain full mobility during bankfull flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches exhibiting reduced form resistance. Our findings confirm that the Shields value for mobilization of the median surface grain size depends on channel gradient and relative submergence; however, we also find that these relations vary considerably for cobble and gravel bed channels due to proportionality between dimensionless shear stress and grain size. Exponents of bedload rating curves across sites correlate most with the D90s of the mobile bed, however, where grain effects are controlled (i.e. along individual streams), differences in form resistance across morphologies exert a primary control on bedload transport dynamics. Application of empirical formulae developed for use in steep alpine channels present variable success in predicting transport rates in forested snowmelt streams. Formulae that explicitly account for reductions in mobile bed area and high morphological resistance associated with woody debris provide the best approximation to observed empirical data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In gravel‐bed rivers with well‐de?ned pool–bar morphology, the path length of transported bed particles must be, at least during ‘channel‐forming’ ?ows, equal to the length scale of the morphology. This is the basis for some methods for estimating bed material transport rates. However, previous data, especially from ?eld tests, are often strongly positively skewed with mean much shorter than the pool–bar spacing. One possible explanation is that positively skewed distributions occur only in channels lacking distinct pool–bar topography or only at lower discharges in pool–bar channels. A series of ?ume experiments using ?uorescent tracers was used to measure path length distributions in low‐sinuosity meandering channels to assess the relation with channel morphology and ?ow conditions. At channel‐forming ?ows, 55 to 75 per cent of the tracer grains were deposited on the ?rst point bar downstream of the point of tracer input, with 15 per cent passing beyond the ?rst bar. Path length distributions are symmetrical with mean equal to the pool–bar spacing and can be described with a Cauchy distribution. In some cases there was a secondary mode close to the point of tracer introduction; this bimodal distribution ?ts a combined gamma–Cauchy distribution. Only when discharge was reduced below the channel‐forming ?ow were frequency distributions unimodal and positively skewed with no relation to the pool–bar spacing. Thus, path length distributions become more symmetrical, and mean path length increases to coincide with pool–bar spacing, as ?ow approaches channel‐forming conditions. This is a substantial modi?cation of existing models of particle transfer in gravel‐bed rivers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号