首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper develops a three‐layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are obtained for an equivalent force per unit length ps of the soil movement. They are repeated for a series of linearly increasing ps (with depth) to yield the nonlinear response. The parameters underpinning the model are determined against pertinent numerical solutions and model tests on passive free‐head and capped piles. The solutions are presented in non‐dimensional charts and elaborated through three examples. The study reveals the following:
  • On‐pile pressure in rotationally restrained, sliding layer reduces by a factor α, which resembles the p‐multiplier for a laterally loaded, capped pile, but for its increase with vertical loading (embankment surcharge), and stiffness of underlying stiff layer: α = 0.25 and 0.6 for a shallow, translating and rotating piles, respectively; α = 0.33–0.5 and 0.8–1.3 for a slide overlying a stiff layer concerning a uniform and a linearly increasing pressure, respectively; and α = 0.5–0.72 for moving clay under embankment loading.
  • Ultimate state is well defined using the ratio of passive earth pressure coefficient over that of active earth pressure. The subgrade modulus for a large soil movement may be scaled from model tests.
  • The normalised rotational stiffness is equal to 0.1–0.15 for the capped piles, which increases the pile displacement with depth.
The three‐layer model solutions well predict nonlinear response of capped piles subjected to passive loading, which may be used for pertinent design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
An approach is presented for the prediction of linear and nonlinear load–deformation behaviour of laterally loaded pile groups. The individual pile response is obtained by the conventional p–y curve technique, while group interaction is modelled using the Mindlin's solution. Good agreement is observed when comparing the present method of analysis with the commonly used interaction factor approach for the computation of response of pile groups embedded in a homogenous, isotropic elastic half-space. The predicted pile group behaviour also compares favourably with existing field data on laterally loaded pile groups in soft clay.  相似文献   

4.
The response of laterally loaded pile foundations may be significantly important in the design of structures for such loads. A static horizontal pile load test is able to provide a load–deflection curve for a single free‐head pile, which significantly differs from that of a free‐ or fixed‐head pile group, depending on the particular group configuration. The aim of this paper is to evaluate the influence of the interaction between the piles of a group fixed in a rigid pile cap on both the lateral load capacity and the stiffness of the group. For this purpose, a parametric three‐dimensional non‐linear numerical analysis was carried out for different arrangements of pile groups. The response of the pile groups is compared to that of the single pile. The influence of the number of piles, the spacing and the deflection level to the group response is discussed. Furthermore, the contribution of the piles constituting the group to the total group resistance is examined. Finally, a relationship is proposed allowing a reasonable prediction of the response of fixed‐head pile groups at least for similar soil profile conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A two‐parameter model has been proposed previously for predicting the response of laterally loaded single piles in homogenous soil. A disadvantage of the model is that at high Poisson's ratio, unreliable results may be obtained. In this paper, a new load transfer approach is developed to simulate the response of laterally loaded single piles embedded in a homogeneous medium, by introducing a rational stress field. The approach can overcome the inherent disadvantage of the two‐parameter model, although developed in a similar way. Generalized solutions for a single pile and the surrounding soil under various pile‐head and base conditions were established and presented in compact forms. With the solutions, a load transfer factor, correlating the displacements of the pile and the soil, was estimated and expressed as a simple equation. Expressions were developed for the modulus of subgrade reaction for a Winkler model as a unique function of the load transfer factor. Simple expressions were developed for estimating critical pile length, maximum bending moment, and the depth at which the maximum moment occurs. All the newly established solutions and/or expressions, using the load transfer factor, offer satisfactory predictions in comparison with the available, more rigorous numerical approaches. The current solutions are applicable to various boundary conditions, and any pile–soil relative stiffness. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Torsional piles in non-homogeneous media   总被引:1,自引:0,他引:1  
The torsional response of a pile exhibits features which are a mixture of those for axial and lateral response. At low load levels, the response is dominated by interaction with the upper soil layers and by the pile rigidity itself, similar to laterally loaded piles. However, failure will generally occur by the whole pile twisting, and so the latter part of the response incorporates the integrated effect of all soil penetrated by the pile, as is the case for axial loading.

In view of the above, solutions for the torsional response of pile must endeavour to incorporate accurate modelling of the soil stiffness profile, and also pay appropriate attention to the gradual development of slip (relative twist) between pile and soil. The paper presents analytical and numerical solutions for the torsional response of piles embedded in non-homogeneous soil, where the stiffness profile follows a simple power law with depth. The solutions encompass: (1) vertical non-homogeneity of soil expressed as a power law; (2) non-linear soil response, modelled using a hyperbolic stressstrain law; (3) effect of relative slip between pile and soil for non-homogeneous stiffness and limiting shaft friction; (4) expressions for the critical pile slenderness ratio (or length) beyond which the pile head response becomes independent of the pile length.

The solutions are developed using a load transfer approach, with each soil layer acting independently from neighbouring layers, and are expressed in terms of Bessel functions of non-integer order, and as simple non-dimensionalised charts. The solutions are applied to two well-documented case histories in the latter part of the paper.  相似文献   


7.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
An analysis is developed to determine the response of laterally loaded rectangular piles in layered elastic media. The differential equations governing the displacements of the pile–soil system are derived using variational principles. Closed‐form solutions of pile deflection, the slope of the deflected curve, the bending moment and the shear force profiles can be obtained by this method for the entire pile length. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. The new analysis allows insights into the lateral load response of square, rectangular and circular piles and how they compare. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this paper is to investigate the behavior of laterally loaded pile groups in sands with a rigid head and correlate the response of a pile group it to that of a single pile. For this purpose, a computationally intensive study using 3-D nonlinear numerical analysis was carried out for different pile group arrangements in sandy soils. The responses of the pile groups were compared to that of the single pile and the variation of the displacement amplification factor Ra was then quantified. The influence of the number of piles, the spacing, and the deflection level on the group response is discussed. A relationship for predicting the response of a pile group, based on its configuration and the response of a single pile, has been formulated allowing also for soil shear strength which was found to affect the group response. The relationship provides a reasonable prediction for various group configurations in sandy soils.  相似文献   

10.
The conventional approach in the design of laterally loaded piles with rectangular cross section involves the simplification of converting the rectangular cross section of the pile to an equivalent circular cross section. An analysis to determine the response of laterally loaded rectangular or circular piles in elastic soil is presented in which this simplification is not required. The analysis is based on the solution of differential equations governing the displacements of the pile–soil system derived using energy principles. The pile geometry and the elastic constants of the soil and pile are the input parameters to the analysis. Using this analysis, comparisons are made between the response of rectangular and circular piles in elastic soil. Based on the proposed solution scheme, a user-friendly spreadsheet program (LATPAXL) was developed that can be used to perform the analysis. In addition, simple equations obtained by regression analysis of the pile head deflection and bending moment profiles are proposed. Examples illustrate the use of the analysis.  相似文献   

11.
The aim of this paper is to investigate the interaction between the piles in a group with a rigid head and correlate the response of a group of piles to that of a single pile. For this purpose, a computationally intensive study using 3‐D nonlinear numerical analysis was carried out for different pile group arrangements in clayey soils. The responses of the groups of piles were compared with that of a single pile and the variation of the settlement amplification factor Ra was then quantified. The influence of the number of piles, the spacing, and the settlement level on the group response is discussed. A previously proposed relationship for predicting the response of a pile group, based on its configuration and the response of a single pile, has been modified to extend its applicability for any pile spacing. The modified relationship provides a reasonable prediction for various group configurations in clayey soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A numerical method of analysis based on elasticity theory is presented for the analysis of axially and laterally loaded pile groups embedded in nonhomogeneous soils. The problem is decomposed into two systems, namely the group piles acted upon by external applied loads and pile–soil interaction forces, and a layered soil continuum acted upon by a system of pile–soil interaction forces at the imaginary positions of the piles. The group piles are discretized into discrete elements while the nonhomogeneous soil behaviour is determined from an economically viable finite element procedure. The load–deformation relationship of the pile group system is then determined by considering the equilibrium of the pile–soil interaction forces, and the compatibility of the pile and soil displacements. The influence of soil nonlinearity can be studied by limiting the soil forces at the pile–soil interface, and redistributing the ‘excess forces’ by an ‘initial stress’ process popular in elasto-plastic finite element analysis. The solutions from this approach are compared with some available published solutions for single piles and pile groups in homogeneous and nonhomogeneous soils. A limited number of field tests on pile groups are studied, and show that, in general, the computed response compares favourably with the field measurements.  相似文献   

13.
Analytical solutions are developed for the prediction of the load–settlement response of a compressible axially loaded cast in situ pile in rock. The principal input parameters are derived from the τ–z curve which applies to the contact zone between the pile shaft and the embedment material. For larger diameter piles in rock, these τ–z curves can differ markedly from curves that apply to piles in clay and may include a significant strain hardening region prior to reaching peak strength. In addition to the complete analyses which would normally require the use of a computer, simplified solutions suitable for hand calculations have been derived for the peak load and the pile head displacement to peak. An example of the application of these simplified design calculations is presented.  相似文献   

14.
A modulus‐multiplier approach, which applies a reduction factor to the modulus of single pile py curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non‐linear pile–soil–pile interaction. The pile–soil–pile interaction is conducted using a 3D non‐linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well‐documented full‐scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
杨晓峰  张陈蓉  黄茂松  袁聚云 《岩土力学》2016,37(10):2877-2885
提出了砂土中水平受荷单桩的修正应变楔方法。从3个方面对应变楔模型进行了修正,首先假设三维被动土楔后桩身的水平位移呈非线性变化,从而使得楔形体内的水平应变不再是一常量,而是沿深度变化。其次引入了两个双曲线型的模型分别用以模拟楔形体中土体的水平应力增量-应变关系和桩-土界面处桩侧剪应力-位移关系。然后通过算例验证了修正方法的有效性,模拟结果与实测结果吻合较好。最后分析了各个修正因素对计算结果影响,结果显示,非线性位移假设的引入对原应变楔模型计算的水平承载力偏高有明显地改善,新的水平应力增量-应变关系和桩侧剪应力-位移关系的引入使得应变楔方法更加简便有效。  相似文献   

16.
Most analytical or semi‐analytical solutions of the problem of load‐settlement response of axially loaded piles are based on the assumption of zero radial displacement. These solutions also are only applicable to piles embedded in either a homogeneous or a Gibson soil deposit. In reality, soil deposits consist of multiple soil layers with different properties, and displacements in the radial direction within the soil deposit are not zero when the pile is loaded axially. In this paper, we present a load‐settlement analysis applicable to a pile with circular cross section installed in multilayered elastic soil that accounts for both vertical and radial soil displacements. The analysis follows from the solution of the differential equations governing the displacements of the pile–soil system obtained using variational principles. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. We compare the results from the present analysis with those of an analytical solution that considers only vertical soil displacements. The analysis presented in this paper also provides useful insights into the displacement and strain fields around axially loaded piles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This article presents a method for the nonlinear analysis of laterally loaded rigid piles in cohesive soil. The method considers the force and the moment equilibrium to derive the system equations for a rigid pile under a lateral eccentric load. The system equations are then solved using an iteration scheme to obtain the response of the pile. The method considers the nonlinear variation of the ultimate lateral soil resistance with depth and uses a new closed‐form expression proposed in this article to determine the lateral bearing factor. The method also considers the horizontal shear resistance at the pile base, and a bilinear relationship between the shear resistance and the displacement is used. For simplicity, the modulus of horizontal subgrade reaction is assumed to be constant with depth, which is applicable to piles in overconsolidated clay. The nonlinearity of the modulus of horizontal subgrade reaction with pile displacement at ground surface is also considered. The validity of the developed method is demonstrated by comparing its results with those of 3D finite element analysis. The applications of the developed method to analyze five field test piles also show good agreement between the predictions and the experimental results. The developed method offers an alternative approach for simple and effective analysis of laterally loaded rigid piles in cohesive soil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A modified strain wedge (SW) method for analyzing the behavior of laterally loaded single piles in sand is proposed. The modified model assumes that the lateral displacements of a pile behind the three-dimensional passive soil wedge are nonlinear, which makes the horizontal soil strain variable with depths instead of a constant value in the original strain wedge model, and also employs two different hyperbolic models, one for describing horizontal stress increment-strain behavior of soil in the wedge, and the other for describing the shear stress-displacement property at the interface between soil and pile shafts. An example is analyzed to demonstrate the effectiveness of the modified method, and a good agreement is obtained. Finally, the effects of modifications on the lateral bearing capacity of pile shafts are discussed. The results show that the problem of overestimating the lateral bearing capacity of piles with strain wedge method can be ameliorated by introducing the assumption of nonlinear lateral displacements of piles. It makes the SW method more convenient and effective in analyzing the behavior of laterally loaded piles by introducing the new relationships of horizontal stress increment-strain and shear stress-displacement.  相似文献   

19.
水平受荷长桩弹塑性计算解析解   总被引:1,自引:0,他引:1  
常林越  王金昌  朱向荣  童磊 《岩土力学》2010,31(10):3173-3178
当考虑桩侧土体非线性本构关系时对水平受荷桩的计算一般需采用数值方法,解析结果相对较少。基于Winkler地基模型和桩侧土体简化的弹塑性本构关系,对均质地基中水平荷载作用下桩头嵌固的长桩进行了解析推导,得到了桩身最大挠度及最大弯矩与荷载关系的统一解析表达式,并采用相同的方法求得高桩情形下桩头挠度的计算式。计算表明,联合荷载作用下桩身泥面处的挠度和转角不等于单个荷载作用时的线性叠加,采用常规的线性叠加法计算将偏于不安全。所求解析式借助计算器即可进行最大挠度和最大弯矩的计算,大大方便了工程的计算应用。  相似文献   

20.
An analysis is developed to determine the response of laterally loaded piles in layered elastic media. The differential equations governing pile deflections in different layers due to a concentrated static force and/or moment acting at the pile head are obtained using the principle of minimum potential energy and calculus of variations. The differential equations are solved analytically using the method of initial parameters. Pile deflection, slope of the deformed axis of the pile, bending moment and shear force can be reliably obtained by this method for the entire pile length. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. It is observed that soil layering has a definite impact on pile response and must be taken into account for proper analysis and design. The analysis forms the basis for future formulations that can consider stress–strain nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号