首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
A modulus‐multiplier approach, which applies a reduction factor to the modulus of single pile py curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non‐linear pile–soil–pile interaction. The pile–soil–pile interaction is conducted using a 3D non‐linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well‐documented full‐scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Time‐domain analysis of dynamic soil–structure interaction based on the substructure method plays an increasing role in practical applications as compared with the frequency‐domain analysis. Efficient and accurate modelling of the unbounded soil or rock medium has been a key issue in such an analysis. This paper presents a subregional stepwise damping‐solvent extraction formulation for solving large‐scale dynamic soil–structure problems in the time domain. Accuracy and efficiency of the formulation are evaluated in detail for a classical problem involving a rigid strip foundation embedded in a half‐space. A practical large‐scale soil–structure interaction problem, which represents a high concrete gravity dam subjected to seismic load, is then analysed using the proposed method. Various responses of the dam, including time histories of the crest displacement and acceleration and contours of the peak principal stresses within the dam body, are presented. Comparisons are also made between these results with those obtained using other models for the unbounded medium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A finite element model for pile‐driving analysis is developed and used to investigate the behaviour of pre‐bored piles, which are then driven the last 1.25 or 2.25 m to their final design depth. The study was conducted for the case of saturated clays. The model traces the penetration of the pile into the soil and accommodates for large deformations. The non‐linear behaviour of the clay in this study is predicted using the bounding‐surface‐plasticity model, as applied to isotropic cohesive soils. The details of the 3‐D numerical modelling and computational schemes are presented. A significant difference was observed in the pile displacement during driving, and in the computed soil resistance at the pile tip, particularly at the earliest driving stages. No difference in soil resistance at the soil pile interface along the pile shaft was detected between the pre‐bored piles whether driven 1.25 or 2.25 m. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a numerical formulation for a three dimensional elasto‐plastic interface, which can be coupled with an embedded beam element in order to model its non‐linear interaction with the surrounding solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent soil‐pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The interface is formulated in order to capture localized material plasticity in the soil surrounding the pile within the range of small to moderate lateral displacements. The interface is formulated following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the displacement field of the solid domain. Each of these alternatives has its own advantages and shortcomings, which are discussed in this paper. The paper presents a comparison of the results obtained by means of the present formulation and by other well‐established analysis methods and test results published in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents an embedded beam formulation for discretization independent finite element (FE) analyses of interactions between pile foundations or rock anchors and the surrounding soil in geotechnical and tunneling engineering. Piles are represented by means of finite beam elements embedded within FEs for the soil represented by 3D solid elements. The proposed formulation allows consideration of piles and pile groups with arbitrary orientation independently from the FE discretization of the surrounding soil. The interface behavior between piles and the surrounding soil is represented numerically by means of a contact formulation considering skin friction as well as pile tip resistance. The pile–soil interaction along the pile skin is considered by means of a 3D frictional point‐to‐point contact formulation using the integration points of the beam elements and reference points arbitrarily located within the solid elements as control points. The ability of the proposed embedded pile model to represent groups of piles objected to combined axial and shear loading and their interactions with the surrounding soil is demonstrated by selected benchmark examples. The pile model is applied to the numerical simulation of shield driven tunnel construction in the vicinity of an existing building resting upon pile foundation to demonstrate the performance of the proposed model in complex simulation environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a numerical formulation of a three dimensional embedded beam element for the modeling of piles, which incorporates an explicit interaction surface between soil and pile. The formulation is herein implemented for lateral loading of piles but is able to represent soil–pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The model assumes perfect adherence between beam and soil along the interaction surface. The paper presents a comparison of the results obtained by means of the present formulation and by means of a previously formulated embedded pile element without interaction surface, as well as reference semi‐analytical solutions and a fully 3D finite element (FE) model. It is seen that the proposed embedded element provides a better convergence behavior than a previously formulated embedded element and is able to reproduce key features of a full 3D FE model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The response of laterally loaded pile foundations may be significantly important in the design of structures for such loads. A static horizontal pile load test is able to provide a load–deflection curve for a single free‐head pile, which significantly differs from that of a free‐ or fixed‐head pile group, depending on the particular group configuration. The aim of this paper is to evaluate the influence of the interaction between the piles of a group fixed in a rigid pile cap on both the lateral load capacity and the stiffness of the group. For this purpose, a parametric three‐dimensional non‐linear numerical analysis was carried out for different arrangements of pile groups. The response of the pile groups is compared to that of the single pile. The influence of the number of piles, the spacing and the deflection level to the group response is discussed. Furthermore, the contribution of the piles constituting the group to the total group resistance is examined. Finally, a relationship is proposed allowing a reasonable prediction of the response of fixed‐head pile groups at least for similar soil profile conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a superposition method expanded for computing impedance functions (IFs) of inclined‐pile groups. Closed‐form solutions for obtaining horizontal, vertical, and rocking IFs, estimated by using pile‐to‐pile interaction factors, are proposed. IFs of solitary inclined piles, crossed IFs, and explicit incorporation of compatibility conditions for pile‐head movements are also appropriately taken into consideration. All of these factors should be known in advance and will be computed and shown for the most relevant cases. The accuracy of the proposed closed‐form solutions is verified for 2 × 2 and 3 × 3 square inclined‐pile groups embedded in an isotropic viscoelastic homogeneous half‐space soil medium, with hysteretic damping. The pile‐to‐pile interaction factors are computed by means of a three‐dimensional time‐harmonic boundary elements–finite elements coupling formulation. The results indicate that the IFs obtained from the proposed method are in good agreement with those obtained from the coupling formulation. Furthermore, crossed vertical‐rocking IFs of solitary piles need to be appropriately considered for obtaining rocking IFs when the number of piles is small. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The driving response of thin‐walled open‐ended piles is studied using numerical simulation of the wave propagation inside the soil plug and the pile. An elastic finite element analysis is carried out to identify the stress wave propagation in the vicinity of the pile toe. It is found that the shear stress wave has the highest magnitude above the bottom of the soil plug. Below the bottom of the soil plug, the vertical stress wave has the highest magnitude. Although the shear stress wave propagating in the radial direction is similar in magnitude to the vertical stress wave at the bottom of the soil plug, it decays rapidly while travelling downwards. The highest vertical stress at the bottom of the soil plug appears after the vertical stress wave interacts with the shear stress wave travelling in the radial direction. Initially, the vertical stress wave propagates with the dilation wave velocity in both the radial and vertical directions. After it interacts with the shear stress wave, the vertical stress wave starts to propagate with the shear wave velocity in the radial direction and with the axial wave velocity downwards. It is concluded that at the bottom of the soil plug, the interaction between the waves travelling in radial and vertical directions is important. The capabilities of several one‐dimensional pile‐in‐pile models to reproduce the driving response given by a two‐dimensional axisymmetric finite element model is studied. It is seen that when the base of the soil plug fails, a one‐dimensional pile‐in‐pile model can be used to achieve results in agreement with the finite element model. However, when the pile is unplugged, where the base of the soil plug does not fail, a reduced finite element mesh that permits the radial wave propagation inside the soil plug must be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
为研究免共振沉桩过程对地表振动影响,采用密度放大法以消除模型桩弹性模量过大对计算效率的影响,在有限差分软件FLAC3D中建立了相应的连续振动沉桩模型,并和文献中的现场测试结果进行了比较,分析了激振力幅值和振动频率这两个施工参数对地表振动响应的影响。结果表明:密度放大法可有效提高数值模拟的计算效率,模拟沉桩7.0倍桩径(4.9 m)所需计算时间约为12.0 h,数值结果较好地模拟了现场测试中免共振沉桩的地表振动影响;激振力幅值和振动频率均主要对近场(水平距离为5.0倍桩径范围内)的地表振动有明显影响;临界沉桩深度与地表振动影响峰值相对应,该深度随水平距离先增大后趋于稳定;激振力幅值对临界沉桩深度的改变不明显,振动频率对远场临界沉桩深度则有较明显影响。  相似文献   

13.
A challenging computational problem arises when a discrete structure (e.g. foundation) interacts with an unbounded medium (e.g. deep soil deposit), particularly if general loading conditions and non‐linear material behaviour is assumed. In this paper, a novel method for dealing with such a problem is formulated by combining conventional three‐dimensional finite‐elements with the recently developed scaled boundary finite‐element method. The scaled boundary finite‐element method is a semi‐analytical technique based on finite‐elements that obtains a symmetric stiffness matrix with respect to degrees of freedom on a discretized boundary. The method is particularly well suited to modelling unbounded domains as analytical solutions are found in a radial co‐ordinate direction, but, unlike the boundary‐element method, no complex fundamental solution is required. A technique for coupling the stiffness matrix of bounded three‐dimensional finite‐element domain with the stiffness matrix of the unbounded scaled boundary finite‐element domain, which uses a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co‐ordinate system, is described. The accuracy and computational efficiency of the new formulation is demonstrated through the linear elastic analysis of rigid circular and square footings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Pile installation leads to significant changes in the main state variables of the surrounding soil. In addition, the installation process may have an influence on adjacent or intersecting structures such as pile grillages. In this paper, three‐dimensional numerical analyses are presented to investigate the effects of pile driving with open or closed cross‐sections on the surrounding soil and on adjacent structures. Two different installation methods are used: quasi‐static pile jacking and vibratory pile driving. The numerical models are evaluated and verified using data from field tests performed in situ during the construction of the quay wall at the container terminal CT4 in Bremerhaven. Two case studies are presented to characterize the main influence factors for additional loading on adjacent structures due to pile installation. Finally, a parametric study is conducted showing the influence of the installation method, pile cross‐section and distance of a pile from an existing structure on the additional loading for this structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Different phenomena such as soil consolidation, erosion, and scour beneath an embedded footing supported on piles may lead to loss of contact between soil and the pile cap underside. The importance of this separation on the dynamic stiffness and damping of the foundation is assessed in this work. To this end, a numerical parametric analysis in the frequency domain is performed using a rigorous three‐dimensional elastodynamic boundary element–finite element coupling scheme. Dimensionless plots relating dynamic stiffness functions computed with and without separation effects are presented for different pile–soil configurations. Vertical, horizontal and rocking modes of oscillation are analyzed for a wide range of dimensionless frequencies. It is shown that the importance of separation is negligible for frequencies below those for which dynamic pile group effects start to become apparent. Redistribution of stiffness contributions between piles and footing is also addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
An analysis of a pile vertical response considering soil inhomogeneity in the radial direction under dynamic loads is presented. The solution technique is based on a three‐dimensional axisymmetric model, which includes the consideration of the vertical displacement of the soil. The soil domain is subdivided into a number of annular vertical zones, and the continuity of the displacements and stresses are imposed at both the interface of pile–soil and the interfaces of adjacent soil zones to establish the dynamic equilibrium equations of the pile–soil interaction. Then, the equations of each soil zone and of the pile are solved one by one to obtain the analytical and semi‐analytical dynamic responses at the top of the pile in the frequency domain and time domain. Parametric studies have been performed to examine the influence of soil parameters' variations in the radial direction caused by the construction effect on the dynamic responses of pile. The results of the studies have been summarized and presented in figures to illustrate the influences of the soil parameters as they change radially. The effect of the radius of the disturbed soil zone caused by construction is also studied in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
王翔鹰  陈育民  江强  刘汉龙 《岩土力学》2018,39(6):2184-2192
抗液化排水刚性桩是一种将刚性桩与竖向排水体相结合的新桩型。基于某建筑桩基工程,开展了抗液化排水刚性桩和不含排水体的普通刚性桩的沉桩对比现场试验,采用了动态土压力传感器实时监测沉桩过程中桩周土体内产生的土压力响应,对比了排水桩与普通桩沉桩对桩周土体水平方向应力及有效应力影响的差异。试验结果表明:抗液化排水刚性桩能够有效减小沉桩过程对桩周深部可液化土体的扰动,在桩身近侧(距桩心0.6 m)深部埋深(-15 m)位置,排水桩的水平土压力响应峰值仅为普通桩的1/4;排水桩能够有效降低沉桩对可液化土层有效应力的影响,使桩周土体更加稳定;在单次沉桩过程中,对于浅部埋深(-5 m),排水桩对桩周土压力峰值的影响作用较小,对于存在可液化土层的深部埋深(-10、-15 m),排水桩对土压力峰值的有效影响半径可达4倍桩径。现场试验数据为抗液化排水刚性桩的桩间距选择提供了有力的设计参考依据。  相似文献   

20.
肖勇杰  陈福全  董译之 《岩土力学》2018,39(8):3011-3019
随着全套管护壁振动取土灌注桩施工工艺的发展,灌注桩在工程中的应用越来越广泛,但是关于灌注桩护壁套管高频振动贯入速率的研究较少。通过假定套管为刚体,将套管周围土体划分为同心轴的圆环柱体,利用Gudehus-Bauer亚塑性本构模型计算套管外侧各土体单元接触面间的剪应力和套管端部土体竖向应力,并考虑套管振动贯入过程中土塞效应,建立灌注桩套管高频振动贯入砂土中贯入速率的计算模型。将所提出的贯入速率计算结果和物理模型试验结果与有限元结果进行对比分析,验证了计算模型的合理性。通过参数分析,得到地基土体孔隙比、振动频率和套管直径对贯入速率的影响规律,为实际工程中快速、准确地预测套管振动贯入速率提供了可靠方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号