首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) is supplemented by a scheme which takes into account the volcanic forcing of climate. With this model, ensemble experiments have been conducted for the 1600s–1900s, in which, along with the volcanic forcing, the anthropogenic forcing due to greenhouse gases and sulfate aerosols and the natural forcing due to variations in solar irradiance were taken into account. The model realistically reproduces the annual mean response of surface air temperature and precipitation to major eruptions both globally and regionally. In particular, the decreases in the annual mean global temperature T g in the IAP RAS CM after the largest eruptions in the latter half of the 20th century, the Mt. Agung (1963), El Chichon (1982), and Mt. Pinatubo (1991) volcanic eruptions, are 0.28, 0.27, and 0.46 K, respectively, in agreement with estimates from observational data. Moreover, in the IAP RAS CM, the volcanic eruptions result in a general precipitation decrease, especially over land in the middle and high latitudes of the Northern Hemisphere. The seasonal distribution of the response shows good agreement with observations for high-latitude eruptions and worse agreement for tropical and subtropical volcanoes. On interdecadal scales, volcanism leads to variations in T g on the order of 0.1 K. In numerical experiments with anthropogenic and natural forcings, the model reproduces a general change in surface air temperature over the past several centuries. Taking into account the volcanic forcing, along with that due to variations in solar irradiance, the model has partly reproduced the nonmonotonic global warming for the 20th century.  相似文献   

2.
董璐  周天军 《海洋学报》2014,36(3):48-60
基于中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室(LASG/IAP)发展的气候系统模式FGOALS_gl对20世纪太平洋海温变化的模拟,讨论了自然因子和人为因子对20世纪太平洋海温变化的相对贡献。观测资料表明,20世纪太平洋平均的SST变化主要分为3个时段:20世纪上半叶的增暖,40—70年代的微弱变冷,70年代之后的迅速增暖。20世纪太平洋SST变化的主导模态是全海盆尺度的振荡上升模态,其次为PDO振荡型,在70年代末PDO存在明显的年代际转型。通过全强迫试验、自然强迫试验、控制试验对上述现象进行归因分析,结果表明,人为因子和内部变率都对第一次增暖有贡献,而人类活动(主要是温室气体的增加)是70年代之后太平洋SST迅速增暖的主要原因。分区域来看,在两个增暖时段中,影响黑潮延伸体区SST变化的主要是自然因子和内部变率,影响其它海域SST变化的则主要是人为因子。全强迫试验可以较好的模拟出前两个模态的空间分布及时间序列。在没有人为因子的影响下,PDO成为太平洋海温变化的主导模态,其年代际转变发生在60年代中期,意味着人为因子是全海盆振荡增暖的主导原因,并且它使得年代际转型滞后了10a。因此,自然因子是导致SST年代际转型中的主导因子,人为因子有"调谐"作用。  相似文献   

3.
The climate model of intermediate complexity developed at the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) is extended by a block for the direct anthropogenic sulfate-aerosol (SA) radiative forcing. Numerical experiments have been performed with prescribed scenarios of the greenhouse and anthropogenic sulfate radiative forcings from observational estimates for the 19th and 20th centuries and from SRES scenarios A1B, A2, and B1 for the 21st century. The globally averaged direct anthropogenic SA radiative forcing F ASA by the end of the 20th century relative to the preindustrial state is ?0.34 W/m2, lying within the uncertainty range of the corresponding present-day estimates. The absolute value of F ASA is the largest in Europe, North America, and southeastern Asia. A general increase in direct radiative forcing in the numerical experiments that have been performed continues until the mid-21st century. With both the greenhouse and the sulfate loadings included, the global climate warming in the model is 1.5–2.8 K by the end of the 21st century relative to the late 20th century, depending on the scenario, and 2.1–3.4 K relative to the preindustrial period. The sulfate aerosol reduces global warming by 0.1–0.4 K in different periods depending on the scenario. The largest slowdown (>1.5 K) occurs over land at middle and high latitudes in the Northern Hemisphere in the mid-21st century for scenario A2. The IAP RAS CM response to the greenhouse and the aerosol forcing is not additive.  相似文献   

4.
青藏高原地区近千年气候变化的时空特征   总被引:1,自引:0,他引:1  
研究青藏高原地区过去千年气候变化的时空特征,对预测未来气候情景下该地区冰冻圈的变化及其水文-生态效应具有重要科学意义。基于15条反映青藏高原地区近千年气候变化的高分辨率重建序列,通过综合分析及经验正交函数(EOF)方法,进一步探讨了青藏高原地区过去千年气候变化的时空特征。综合重建序列显示:整体而言,青藏高原地区中世纪暖期(MWP)约持续到1450s,小冰期(LIA)约发生于1450—1870s,此后近百年来的温度在波动中逐渐升高;对比分析表明青藏高原地区MWP与20世纪前半叶的温暖幅度可比、也与其他北半球温度序列中同时期的气候特征相似,LIA较之我国中东部地区相对温暖。EOF分析结果揭示了过去千年典型气候特征(MWP、LIA及20世纪暖期等)在青藏高原的区域差异:对于MWP,其在高原东北部、中北部及西部地区约持续至1450s(其中约1250—1300s为冷波动),在喀喇昆仑及高原中东部地区约至13世纪初,高原南部诸多代用资料间接表明MWP约发生于11—15世纪(而在反映高原南部地区气候信息的第三主分量中MWP特征并不明显);对于LIA,高原东北部及西部地区的冷波动约为1450—1520s、1650—1750s、1780—1850s,喀喇昆仑地区的冷波动约为1450—1650s、1740—1780s、1820—1850s,高原南部、中东部及中北部地区的冷波动约为1580—1650s、1740—1780s(其中1670—1730s为相对暖期,并在喀喇昆仑地区也有所体现);对于近百年的全球显著升温过程,高原大部分地区均有记录,而南部与中东部地区的部分树轮年表则显示近几十年来夏季温度存在一定的下降趋势,这可能与全球变暖过程中不同季节(冬夏季节)温度变化的不一致性有关。  相似文献   

5.
渤海、北黄海海冰与气候变化的关系   总被引:13,自引:7,他引:13  
渤海和北黄海的冰情随着历年冬季气候差异而不同.暖冬海冰覆盖范围不足海域的15%,而寒冬可覆盖海域80%以上.概述了海冰监测及资料来源.冰覆盖面积、外缘线位置和冰况等级等被作为反映结冰海域冰情的指标.用大连和营口站的气温表示渤海、北黄海海域的局地气候.用1952~2000年大连的月平均气温描述冰情的变化.给出冰情指数由1952/1953年到1999/2000年随大连站月平均气温变化.影响渤海和北黄海冰情和气候的因子很多,诸如大气环流的演变和太阳活动等.分析了多种因子与冰情的滞后相关,指出20世纪90年代渤海冰情持续偏轻与全球气候变暖趋势相当一致;渤海和北黄海冰情的年际变化与El-Nino现象以及太阳活动周期有关;讨论了海冰季节演变的特征  相似文献   

6.
A change in ecosystem types, such as through natural-vegetation-agriculture conversion, alters the surface albedo and triggers attendant shortwave radiative forcing (RF). This paper describes numerical experiments performed using the climate model (CM) of the Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, for the 16th–21st centuries; this model simulated the response to a change in the contents of greenhouse gases (tropospheric and stratospheric), sulfate aerosols, solar constant, as well as the response to change in surface albedo of land due to natural-vegetation-agriculture conversion. These forcing estimates relied on actual data until the late 20th century. In the 21st century, the agricultural area was specified according to scenarios of the Land Use Harmonization project and other anthropogenic impacts were specified using SRES scenarios. The change in the surface vegetation during conversion from natural vegetation to agriculture triggers a cooling RF in most regions except for those of natural semiarid vegetation. The global and annual average RF derived from the IAP RAS CM in late 20th century is ?0.11 W m?2. Including the land-use driven RF in IAP RAS CM appreciably reconciled the model calculations to observations in this historical period. For instance, in addition to the net climate warming, IAP RAS CM predicted an annually average cooling and reduction in precipitation in the subtropics of Eurasia and North America and in Amazonia and central Africa, as well as a local maximum in annually average and summertime warming in East China. The land-use driven RF alters the sign in the dependence that the amplitude of the annual cycle of the near-surface atmospheric temperature has on the annually averaged temperature. One reason for the decrease in precipitation as a result of a change in albedo due to land use may be the suppression of the convective activity in the atmosphere in the warm period (throughout the year in the tropics) and the corresponding decrease in convective precipitation. In the 21st century, the effect that the land-use driven RF has on the climate response for scenarios of anthropogenic impact is generally small.  相似文献   

7.
On the basis of the radiation-cloudiness model and the available long-term satellite data, we study the correlations of the greenhouse effect with the surface temperature of air and effective cloudiness equal to the product of the cloud amount by the conditional optical density of the clouds. We deduce the relations of satellite monitoring of the behavior of the anomalies of global air temperature caused by the excess amounts of volcanic products and greenhouse gases (formed as a result combustion of the fossil fuel) in the atmosphere. Realistic estimates of the processes of cooling and warming of the currently existing climate are obtained. Under the condition of preservation of the existing linear trends in the behaviors of the short-and long-wave flows of radiation into the outer space (observed according to satellite data for the last 20 yr), the global temperature in the second part of the current century can increase by 1.6–2.0°C. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 13–28, November–December, 2006.  相似文献   

8.
Relation of ice conditions to climate change in the Bohai Sea of China   总被引:4,自引:0,他引:4  
1NTRODUcrIONThe bohai As is a seasonally ice-covered sea and is located in the lowest latitudes (37' -4l'N), where sea ice occurs. The bohai ffea is nearly enclosed by land in the south, the northand the west, and only connects to the Huanghai ffea through the bohai Strait in the east.The width of the strait is abeut l06 km. The boai ffea is very shallow basin with the meandepth of l8 m and the maximum depth of 78 m. The topography of the sea bottom and thecoastal regions has an importan…  相似文献   

9.
Radiative forcing, the global warming potential, and the recently proposed global temperature potential are widely used not only in scientific studies but also in a number of economic and political evaluations of the effects of an increase in the contents of greenhouse gases and aerosols and other factors that form climate and its changes. New indices have appeared, and, to calculate them, information is required on the quantitative characteristics of the climate system’s components—current and expected—within standard periods of 20, 100, and 500 years. The calculations of some of these indices and potentials require consideration for variations in the rate of energy exchange between the atmosphere and the underlying surface (ocean) within the indicated periods. This leads to a more general problem of analyzing the sensitivity of the climate system to external (radiative) forcing and its response to such a forcing for the conditions of both stationary (equilibrium) and nonstationary “greenhouse” climates. A brief review of the few existing studies of such a response is given.  相似文献   

10.
The Little Ice Age (∼1600–1900 AD) and 20th century sediment accumulation rates in Billefjorden, a subpolar fjord on Svalbard, were reconstructed by applying 210Pb, 137Cs and AMS 14C datings. The modern sediment accumulation rate decreases from more than 0.39 cm y−1 at the fjord head to 0.08 cm y−1 close to the fjord mouth. However, during the Little Ice Age the sediments accumulated at a much lower rate of 0.02 cm y−1 in the central fjord basin. This difference is most likely related to the rapid retreat of glaciers during the 20th century, when most of them withdrew up to 2 km. The post-Little Ice Age increases in temperature and a negative glacier mass balance resulted in a larger meltwater discharge transferring substantial amounts of sediments released from the glaciers, as well as those eroded from previously stored unconsolidated glacial sediments. A comparison of data from the subpolar fjords of Svalbard suggests that the increase in the sediment accumulation rate is a common trend, and further increases might be expected if climate warming continues. The properties of the fjord sediments (grain size, IRD, coarse-fraction composition, clay mineralogy) from the Little Ice Age and the 20th century showed no distinct differences. The change in the accumulation rate may be the most evident sedimentary record of this climatic change.  相似文献   

11.
The Hadley Centre climate model HadCM3 simulates a stable thermohaline circulation driven by deep water formation in the Norwegian and Labrador Seas without the need for flux adjustments. It has however been suggested that this result is the fortuitous consequence of the local use of the Roussenov convection scheme in this region, and that the model simulation may depend sensitively on this parameterisation. Here we investigate the sensitivity of the thermohaline circulation (THC) to the model’s treatment of the overflows from the Nordic Seas for both pre-industrial and increasing greenhouse gas forcings. We find that although the density structure in the Labrador Sea does depend upon the specifics of how the overflows are modelled, the global thermohaline circulation and climate responses are not sensitive to these details. This result gives credibility to previously published modelling studies on the response of the thermohaline circulation to anthropogenic greenhouse gas forcing, and implies that research may profitably be focussed on the large scale transports, where models are known to disagree.  相似文献   

12.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The climate model of the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) has been supplemented with a module of soil thermal physics and the methane cycle, which takes into account the response of methane emissions from wetland ecosystems to climate changes. Methane emissions are allowed only from unfrozen top layers of the soil, with an additional constraint in the depth of the simulated layer. All wetland ecosystems are assumed to be water-saturated. The molar amount of the methane oxidized in the atmosphere is added to the simulated atmospheric concentration of CO2. A control preindustrial experiment and a series of numerical experiments for the 17th–21st centuries were conducted with the model forced by greenhouse gases and tropospheric sulfate aerosols. It is shown that the IAP RAS CM generally reproduces preindustrial and current characteristics of both seasonal thawing/freezing of the soil and the methane cycle. During global warming in the 21st century, the permafrost area is reduced by four million square kilometers. By the end of the 21st century, methane emissions from wetland ecosystems amount to 130–140 Mt CH4/year for the preindustrial and current period increase to 170–200 MtCH4/year. In the aggressive anthropogenic forcing scenario A2, the atmospheric methane concentration grows steadily to ≈3900 ppb. In more moderate scenarios A1B and B1, the methane concentration increases until the mid-21st century, reaching ≈2100–2400 ppb, and then decreases. Methane oxidation in air results in a slight additional growth of the atmospheric concentration of carbon dioxide. Allowance for the interaction between processes in wetland ecosystems and the methane cycle in the IAP RAS CM leads to an additional atmospheric methane increase of 10–20% depending on the anthropogenic forcing scenario and the time. The causes of this additional increase are the temperature dependence of integral methane production and the longer duration of a warm period in the soil. However, the resulting enhancement of the instantaneous greenhouse radiative forcing of atmospheric methane and an increase in the mean surface air temperature are small (globally < 0.1 W/m2 and 0.05 K, respectively).  相似文献   

14.
巴伦支海-喀拉海是北冰洋最大的边缘海,能够对环境变化做出快速的响应和反馈,是全球气候变化最为敏感的区域之一,其古海洋环境演变及海冰变化研究是全球气候变化研究的重要组成部分。末次盛冰期以来,该区域的古海洋环境受到太阳辐射、海流强度、海平面变化、温盐环流和河流输入等因素影响发生了一系列不同尺度的波动。巴伦支海受到北大西洋暖水和极地冷水两大水团相互作用的影响,在水团交界处 (极锋) 由于不同水团性质的差异,导致其海水温度、盐度及海冰发生剧烈变化。而喀拉海则受到叶尼塞河和鄂毕河大量淡水输入影响,海流系统较巴伦支海相对复杂,沉积物主要来源于河流输入的陆源物质,并可以通过磁化率的分析明确区分两条河流的陆源物质。由于受到冷水和暖水的相互作用,巴伦支海-喀拉海海冰变化迅速,并且在全新世中晚期存在 0.4 ka 和 0.95 ka 的变化周期,但海冰变化的影响因素并不是单一的,而是气候系统内部各因子相互作用的结果。目前古海冰重建研究工作主要为定性研究,定量研究相对较少,所选用的重建指标也相对单一,另外存在年代框架差、分辨率低等不足。本文以巴伦支海和喀拉海为中心,总结了其快速气候突变事件、古温度盐度、海平面及海冰的变化,对影响因素进行了探讨,并通过分析末次盛冰期以来古海洋环境研究的不足,提出了相应的展望。  相似文献   

15.
本文通过大量实际资料分析认为,现代全球变暖与海平面上升,源于200多年前小冰期冷峰出现后的气候返暖、海平面回升过程演变的结果。近30年的世界海平面上升的速率,有着上世纪80、90年代和本世纪前10年世界平均气温每10年以0.2F°(0.11℃)为梯度的连续抬升为背景。在此以CO。含量为气候指标,划分出了公元200年以来的八个暖段(暖期)。若按冷暖极值距200年或250年计算,则由目前正在发展的暖期,将在公元2050年或2100年前后结束,而后开始降温。作者依据最近30年同一时段国内外验潮资料计算获得的绝对海平面升降速率为+1.52±0.27mm/a及相对海平面升降速率为+1.39±0.26mm/a。按照2010年坎昆气候大会决议要求,在对前人有关研究成果进行考量时,对将来的2050和2100年世界海平面预测及我国地面沉降较明显的沿海城市如天津、上海、厦门、海口等相对海平面升降值,进行了测算与评估。  相似文献   

16.
热带气旋活动以及由此产生的风暴潮和强降雨对南海及周边沿海地区社会经济构成巨大威胁。对器测记录之前全新世热带气旋的研究有助于准确预测全球变暖背景下热带气旋活动的变化趋势。本文利用南沙群岛安乐礁潟湖沉积物重建了小冰期以来准年分辨率的热带气旋活动, 共识别28个风暴事件层。研究表明, 小冰期以来, 南沙群岛安乐礁热带气旋活动在年代际到百年尺度上频繁变化, 发育两个主要的风暴活跃期。在小冰期早期(AD 1471—1620)经历了最为强烈的风暴活跃期, 另一个风暴活跃期位于现代暖期的AD 1930—1960, 风暴活动虽有所加强, 但明显低于小冰期早期。与同期永暑礁重建结果的对比表明, 热带气旋活动存在明显的时空差异性, 更多来自相近区域的高分辨率风暴记录可有效降低古风暴活动重建的不确定性, 提高重建记录的准确度。  相似文献   

17.
“暖池”表层对大气局地强迫的响应特征   总被引:4,自引:2,他引:4  
刘秦玉  王启 《海洋与湖沼》1995,26(6):658-664
利用湍流动能垂直混合模式和TOGA-COARE加强观测期的观测资料,对“暖池”上混合层的垂直混合过程进行数值试验和数值模拟,分析表层温度、盐度的变化特征。结果表明:TKE模式可以较好地模拟混层,尤其是表层温度、盐度对大气局地强迫的响应;太阳辐射是热源,感热、潜热通量等会造成“暖池”上混合层的温度降低,“暖池”对大气释放热量;降水有利于“淡水盖”形成和维持,从则使层结稳定,SST升高。但在气温低于海  相似文献   

18.
高纬度珊瑚栖息地能否成为气候变暖背景下热带珊瑚物种的“避难所”仍不明确, 南海北部的相关研究更是稀少。本文以取自涠洲岛的2根珊瑚礁沉积岩心为研究对象, 通过U-Th定年、沉积组分分析以及珊瑚种属鉴定等方法, 探讨近千年以来珊瑚礁的发育过程及其对气候变化的响应。研究结果发现, Core1(石螺口)岩心沉积的3个快速堆积阶段分别与罗马暖期、中世纪暖期和现代暖期大致对应; 而2个缓慢堆积阶段则分别与黑暗时代冷期和小冰期大致对应, 证实了温暖的气候对珊瑚礁发育有促进作用, 而寒冷的气候则不利于珊瑚礁的发育; 此外, 现代强烈的人为干扰可能也导致了涠洲岛珊瑚礁的迅速退化。Core2(南湾)中陆源沉积含量高, 珊瑚年龄主要集中在800AD—950AD和现代这两个时间段内, 其原因可能与环境变化、风暴作用及湾内现代珊瑚分布特征有关。通过对比这两个站位的珊瑚礁沉积特征, 本文进一步提出“完全避难所”和“非完全避难所”的概念, 揭示涠洲岛珊瑚可能同时具有低纬度热带珊瑚礁和高纬度珊瑚群落这两种发育特征和趋势。  相似文献   

19.
The semi-enclosed nature of the Mediterranean Sea, together with its smaller inertia due to the relative short residence time of its water masses, make it highly reactive to external forcings, in particular variations of water, energy and matter fluxes at the interfaces. This region, which has been identified as a “hotspot” for climate change, is therefore expected to experience environmental impacts that are considerably greater than those in many other places around the world. These natural pressures interact with the increasing demographic and economic developments occurring heterogeneously in the coastal zone, making the Mediterranean even more sensitive. This review paper aims to provide a review of the state of current functioning and responses of Mediterranean marine biogeochemical cycles and ecosystems with respect to key natural and anthropogenic drivers and to consider the ecosystems’ responses to likely changes in physical, chemical and socio-economical forcings induced by global change and by growing anthropogenic pressure at the regional scale. The current knowledge on and expected changes due to single forcing (hydrodynamics, solar radiation, temperature and acidification, chemical contaminants) and combined forcing (nutrient sources and stoichiometry, extreme events) affecting the biogeochemical fluxes and ecosystem functioning are explored. Expected changes in biodiversity resulting from the combined action of the different forcings are proposed. Finally, modeling capabilities and necessity for modeling are presented. A synthesis of our current knowledge of expected changes is proposed, highlighting relevant questions for the future of the Mediterranean ecosystems that are current research priorities for the scientific community. Finally, we discuss how these priorities can be approached by national and international multi-disciplinary research, which should be implemented on several levels, including observational studies and modeling at different temporal and spatial scales.  相似文献   

20.
基于台湾以东黑潮主流系沉积物中碳、氮、磷等生源要素指标的变化,在沉积物年代学的基础上,探讨了近千年来气候环境变化在黑潮沉积物中的历史记录。结果表明,近千年来台湾以东、琉球岛弧南侧斜坡的黑潮主流区平均沉积速率可达34.2 cm/ka,据其变化可大致分成的3个沉积阶段,与中世纪暖期、小冰期和现代暖期的划分基本一致。沉积物中碳以无机碳为主,总无机碳(TIC)的含量从1850年开始逐渐增大并伴随剧烈波动,恰好与大气CO2水平的快速升高相对应;总有机碳(TOC)含量的变化则与东亚夏季风强度的变化关系密切,在夏季风较弱的小冰期其含量明显高于夏季风较强的中世纪暖期和现代暖期,这是由于较弱的夏季风有利于亚洲大陆风尘的产生和向海输送,从而促进了研究海域的初级生产力。1850年以来,沉积物中的C∶N∶P逐渐从低于转变为高于Redfield比,反映了上层水体营养盐结构从氮缺乏到氮充足的转变,这与近现代以来急剧增加的全球氮排放密切相关。总体来说,黑潮主流系沉积物中的生源要素指标,明确记录和响应了近千年来的气候环境变化,尤其是近150多年以来不断加剧的人类活动所造成的气候环境剧变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号