首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seawater along the southern margin of the Cretan Sea (May 1994–September 1995) has been found to have light transmission values ranging from 79% to 94%, corresponding to SPM values ranging from 1.5 mg l−1 to 0.2 mg l−1. The highest SPM concentrations (mostly of terrigenous origin) were found close to the sea-bed over the shelf-break and upper slope. The origins of SPM in the surface waters (<150 m) is principally biogenic. The occurrence of nepheloid layers at intermediate depths within the upper water column is mostly a result of density stratification. The dynamics of SPM distributions are governed by the 2-gyre system which induces a general onslope flow; and so inhibits the seaward dispersion of the relatively more turbid coastal/shelf waters. This is in agreement with the virtual absence of suspensates of terrigenous origin offshore of the shelf-break. Near bottom nepheloid layers (BNL) and detached intermediate nepheloid layers occur in the vicinity of the shelf-break and over upper slope region; these may be explained by resuspension induced by near-bed current activity and breaking of internal waves. High concentrations of SPM near the seabed may be caused by anthropogenic (trawling) activity. Occasionally, the formation of BNL may result from local seismic activity resulting in gravity-driven mass movements.  相似文献   

2.
悬浮物质量浓度是黄河口海域重要的水质和水环境监测参数之一,直接影响着水面以下光场的分布,进而影响水体的初级生产力和水域生态环境。本文基于2011年6—7月和11—12月共计89组现场实测悬浮物质量浓度和光谱数据,分析了黄河口及其附近海域不同悬浮物质量浓度的水体光谱特征,尝试利用多种波段组合建立悬浮物质量浓度遥感反演算法。结果表明865 nm波段与波段比655 nm/560 nm组合形式算法反演结果最优,算法相关系数R2为0.95,平均相对误差为25.65%。将算法应用于2014—2016年共7景Landsat 8 OLI遥感影像,分析了不同年份黄河口悬浮物质量浓度的时空分布特征,黄河口海域悬浮物质量浓度分布总体呈现近岸高,离岸低的特点,不同时期悬浮物质量浓度量值上有显著变化。  相似文献   

3.
The study of water clarity is essential to understand variability in biological production, particularly in coastal seas. The spatial and temporal variability of non-algal suspended particulate matter (SPM) in surface waters of the English Channel was investigated and related to local forcing by means of a large satellite dataset covering the study area with a spatial resolution of 1.2 km and a daily temporal resolution. This analysed dataset is a time series of non-algal SPM images derived from MODIS and MERIS remote-sensing reflectance by application of an IFREMER semi-analytical algorithm over the period 2003–2009. In a first step, the variability of time series of MODIS images was analysed through temporal autocorrelation functions. Then, non-algal SPM concentrations were assessed in terms of site-specific explanatory variables such as tides, wind-generated surface-gravity wave amplitudes and chlorophyll-a (Chl-a), based on three statistical models with fitting parameters calibrated on a dataset of merged MERIS/MODIS images gathered from 2007 to 2009 over the whole English Channel. Correlogram analysis and the first model highlight the local patterns of the influence of the tide, especially the neap–spring cycle, on non-algal surface SPM. Its effect is particularly strong in the central and eastern English Channel and in the western coastal areas. The second model shows that waves prevail as driver at the entrance of the English Channel. The most sophisticated of the three statistical models, although involving only three explanatory variables—the tide, waves and Chl-a—is able to estimate non-algal surface SPM with a coefficient of determination reaching 70% at many locations.  相似文献   

4.
Remote sensing of chlorophyll concentration is potentially affected by the presence of inorganic matter in the water column. Seasonal variability of total suspended particulate matter (SPM) concentration and its partition into organic and inorganic fractions was thus measured in the estuary and Gulf of St. Lawrence during five cruises. These measures were made in the surface layer down to the depth of the 0.1% light level. Results indicate that vertical variability was small for the entire study area. Data analysis lead to the definition of two main regions having different SPM characteristics: 1) the estuary zone characterized by a strong spatial variability, intermediate SPM concentrations and a clear spring phytoplankton bloom that is combined to an increased inorganic matter load; 2) the gulf region characterized by a relatively low SPM concentration and phytoplankton blooms in the spring and fall periods. Combined with in situ measurements of remote sensing reflectances, the database was used to validate existing inorganic matter retrieval algorithms and develop a new one better adapted to the low concentrations encountered in the St. Lawrence estuary and Gulf.  相似文献   

5.
An algorithm is presented for estimating near-surface SPM concentrations in the turbid Case 2 waters of the southern North Sea. The single band algorithm, named POWERS, was derived by parameterising Gordon's approximation of the radiative transfer model with measurements of Belgian and Dutch inherent optical properties. The algorithm was used to calculate near-surface SPM concentration from 491 SeaWiFS datasets for 2001. It was shown to be a robust algorithm for estimating SPM in the southern North Sea. Regression of annual geometric mean SPM concentration derived from remote sensing (SPMrs), against in situ (SPMis) data from 19 Dutch monitoring stations was highly significant with an r2 of 0.87. Further comparison and statistical testing against independent datasets for 2000 confirmed the consistency of this relationship. Moreover, time series of SPMrs concentrations derived from the POWERS algorithm, were shown to follow the same temporal trends as individual SPMis data recorded during 2001. Composites of annual, winter and summer SPMrs for 2001 highlight the three dominant water masses in the southern North Sea, as well as their winter–fall and spring–summer variability. The results indicate that wind induced wave action and mixing cause high surface SPM signals in winter in regions where the water column becomes well mixed, whereas in summer stratification leads to a lower SPM surface signal. The presented algorithm gives accurate near-surface SPM concentrations and could easily be adapted for other water masses and seas.  相似文献   

6.
深海富稀土沉积物因其资源潜力巨大,近年来备受关注。一般认为,沉积物中稀土元素和钇(总称REY)的主要来源为上覆海水,但针对富稀土海区上覆海水中REY的研究较少。本研究针对南太平洋富稀土海区采集的3个站位的全水深海水样品,测试出了15种溶解态REY,并对比了邻近海域已发表的数据,分析了该海区REY的空间分布特征。研究区表层水中溶解态REY浓度主要受风尘输入影响,而中层和深层水体中溶解态REY浓度主要受水团控制。经过澳大利亚后太古代页岩(PAAS)和北太平洋深层水(NPDW)归一化后的配分模式可确定REY间的分馏特征,分辨出不同水团。与其他大洋中报道的REY数据比较发现,表层水中REY浓度受风尘和河流输入影响导致差别较大,中层水中REY浓度与印度洋较为接近,深层水中REY浓度与不同大洋的水团年龄表现为正相关趋势,即REY浓度由小到大依次为大西洋、印度洋、南太平洋、北太平洋。  相似文献   

7.
长江口是典型的高浊度河口,长江口及其邻近海域悬浮颗粒物(suspended particulate matter,SPM)浓度跨度大,泥沙过程活跃、复杂。2015年7月9-20日(洪季)和2016年3月7-19日(枯季),使用OBS和LISST分别测定了该区域99个和89个站位的SPM浊度、光衰减系数、总体积浓度、平均粒径和粒径谱等参数;同时通过现场过滤测定了各站位表、中、底3层的SPM质量浓度以及典型站位SPM中颗粒有机碳(particulate organic carbon,POC)的δ13C、颗粒氮(particulate nitrogen,PN)的δ15N以及POC/PN摩尔比值。结果表明,浊度、光衰减系数、总体积浓度等3个参数均与SPM质量浓度显示出了显著的正相关关系。研究区域SPM平均粒径一般表层大于底层、枯季大于洪季;长江淡水端元输出的SPM粒径枯季也明显大于洪季。具有相似粒径谱特征的SPM可以通过测定δ13C和δ15N值来进一步区分其来源和组成。SPM质量浓度和总体积浓度等参数结合还可以计算SPM有效密度,用以了解研究区域SPM的沉降过程。结果表明两个季节SPM有效密度和粒径之间显示出了显著的负相关关系,说明枯季长江输出的SPM由于粒径大、密度小、沉降速度低,加之强烈的垂直混合和口门拦门沙附近的再悬浮,随着环流可能到达研究区域北部的最东端;而洪季长江输出的SPM由于粒径小、密度大、沉降速度高,在口门附近快速沉降。  相似文献   

8.
Iron, Mn, Cu, Pb and Zn have been determined in suspended particulate matter (SPM) collected in the estuarine plume regions of the Humber (during winter, spring and summer) and Thames (winter only). Metal concentrations (w/w) were found to increase with SPM concentration and could be defined in terms of the mixing of an ambient, slow settling population, with variable proportions of a diluent population. The end-members of the particle mixing series are fine material derived from coastal erosion, which is modified seasonally by biological production, and contaminated estuarine material which is contained within the estuarine discharge or derived from local resuspension of reworked deposits by tidal currents and wave activity. Iron-normalized metal concentrations exhibited an inverse relationship with SPM concentration in the Humber region and regression analyses enabled seasonal changes in end-member compositions to be evaluated. Since the metal:Fe ratios of the ambient population did not accord with those of local cliff samples, additional sources of metal were proposed whose importance to particle composition increases with a reduction in SPM concentration. Qualitatively, the seasonal variation of end-member compositions was consistent with (i) the coupling between redox processes occurring in the bed sediment and adsorption of metals (Mn, Cu, Zn) released from the pore waters onto ambient and diluent suspended particles in the overlying water column, and (ii) adsorption of metal (Pb) by ambient suspended particles from an extraneous (atmospheric) source. In the Thames plume, an increase in Fe-normalized metal concentrations with increasing particle concentration resulted from the mixing of end-member particles and the effects of additional metal from an internal or extraneous source were less clear, possibly because of metal desorption from suspended particles traversing the salinity gradient in the outer estuary. The processes described in this study regulate the internal cycling of trace metals in estuarine plume regions and the export of metals to neighbouring shelf sea environments.  相似文献   

9.
In order to investigate the photobleaching potential of estuarine waters from different depths and redox conditions and with varying degree of biological activity, filtered, unfiltered and chloroform-poisoned water samples from the Baltic Sea were exposed to ambient sunlight. Fluorescence, at excitation 350 nm and emission 450 nm, was used as an indication of humic substance concentration. Fluorescence and organic carbon concentration were measured at regular time intervals during light exposure. We found that the decrease in humic substance fluorescence can be fitted to an exponential decay function. The fluorescence half-lives were within the range 0.4 – 4.6 days in different water masses, with fluorescence decreasing to between 20% and 60% of initial concentration, respectively. Results from the curve fitting procedure indicate a rest concentration of humic substance fluorescence, similar among the sampled sites, that is resistant to further photochemical degradation. The largest relative decreases in fluorescence were found in deep waters, but samples from deep waters also had a higher fluorescence rest concentration than samples from surface waters. Biological activity was reduced by filtering the samples through 0.2μm pore size filters or adding chloroform. No statistically significant differences were found after 3 days of irradiation between samples with and without treatment to reduce biological activity. The highest initial fluorescence values and the largest fluorescence decrease were found in the anoxic waters of the Gotland Deep. The organic carbon concentrations decreased 3–7% at all stations. The shortest half-life of humic substance, and the largest decrease in organic carbon concentrations, were found in samples from the northern basins of the Baltic Sea.  相似文献   

10.
在沿岸海域——厦门湾的定点观测站,研究了不同粒径悬浮颗粒物(SPM)、Chl-a和^234Th随潮汐的变化,结果表明,不管采样深度和粒级大小,Chl-a浓度的潮汐变化均为高潮大于低潮.SPM浓度的潮汐变化,表层的规律性很明显,即不管是第一天还是第二天,也不管粒径的大小,SPM浓度无例外地呈现高潮小于低潮之势.从不同粒径SPM、Chl-a的潮汐变化的比较可以看出,浮游植物等生源颗粒物在该研究水域的颗粒物中所占比例很小,颗粒物主要来自九龙江河流输入的悬浮物和表层沉积物的再悬浮.在沿岸海域,颗粒态^234Th是总^234Th的主要组成部分,^234Th各粒级的比活度均呈现高潮大于低潮的普遍趋势,基于^234Th估算的沿岸POC、PON等输出通量也存在潮汐变化的影响.文中对上述研究对象随潮汐变化的原因作了分析和讨论.  相似文献   

11.
渤海悬浮颗粒物的三维输运模式 I.模式   总被引:18,自引:4,他引:14  
为了长时间,大范围研究渤海中悬浮物的输运规律,研究应用并改造了备国汉堡大学的粒子追踪悬浮物输运的三维模式,模式中考虑了风、气压等气象要素以外海传入的潮波作用下的三维正压海流对悬浮颗粒物的输运.同时考虑了悬浮颗粒物的学降及再悬浮机制和底质中的细颗粒物的运动,将风浪的作用引入了悬浮物输运的计算,数值模式应用的粒五追踪方法,能较好地反映悬浮物浓度的迅速变化。  相似文献   

12.
近岸海域悬浮颗粒物的分布与扩散对水体生态环境、海岸地貌演变、水产养殖以及海岸工程等有重要影响。由于刁口河流路的改道,黄河三角洲北部成为强烈侵蚀岸段,揭示该区域的悬浮物浓度变化特征和规律是防护工程安全维护的基础。利用经良好检验的模型反演近岸海域悬浮物浓度,Landsat-8和Sentinel-2卫星影像反演结果的交叉验证表明,基于两种传感器反演的悬浮物浓度具有较强的一致性,两种卫星数据可以结合使用。研究区近岸海域悬浮物浓度季节变化明显,冬季和春季悬浮物浓度较高,夏季较低,秋季是悬浮物浓度从低向高转换的季节。冬、春季该区域风浪较大,在波浪掀沙和潮流输沙的联合作用下,底床泥沙强烈再悬浮,是形成悬浮物的主要来源,丁坝群的修建也在一定程度上改变了悬浮物的时空分布。  相似文献   

13.
Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS ‘surface reflectance’ product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively.Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration within surface waters of the whole estuary showed strong seasonal variations but remained almost unchanged on a 1-year-basis. These observations suggest that the masses of suspended sediments exported toward the ocean and supplied by the rivers were almost equivalent during the year investigated (2005). Results show the usefulness of information extracted from combined field and current ocean color satellite data in order to monitor the transport of suspended particles in coastal and estuarine waters.  相似文献   

14.
Nutrients, chlorophyll-a, particulate organic carbon (POC), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during three seasonal cruises from 2003 to 2005. In spring and autumn, relatively high concentrations of nitrate (2.6~12.4 μmol kg-1) and phosphate (0.17~0.61 μmol kg-1) were observed in the surface waters in the western part of the study area because of the large supply of nutrients from deep waters by vertical mixing. The surface concentrations of nitrate and phosphate in summer were much lower than those in spring and autumn, which is ascribed to a reduced nutrient supply from the deep waters in summer because of surface layer stratification. While previous studies indicate that upwellings of the Kuroshio Current and the Changjiang (Yangtze River) are main sources of nutrients in the ECS, these two inputs seem not to have contributed significantly to the build-up of nutrients in the northern ECS during the time of this study. The lower nitrate:phosphate (N:P) ratio in the surface waters and the positive correlation between the surface N:P ratio and nitrate concentration indicate that nitrate acts as a main nutrient limiting phytoplankton growth in the northern ECS, contrary to previous reports of phosphate-limited phytoplankton growth in the ECS. This difference arises because most surface water nutrients are supplied by vertical mixing from deep waters with low N:P ratios and are not directly influenced by the Changjiang, which has a high N:P ratio. Surface chlorophyll-a levels showed large seasonal variation, with high concentrations (0.38~4.14 mg m-3) in spring and autumn and low concentrations (0.22~1.05 mg m-3) in summer. The surface distribution of chlorophyll-a coincided fairly well with that of nitrate in the northern ECS, implying that nitrate is an important nutrient controlling phytoplankton biomass. The POC:chlorophyll-a ratio was 4~6 times higher in summer than in spring and autumn, presumably because of the high summer phytoplankton death rate caused by nutrient depletion in the surface waters.  相似文献   

15.
《Journal of Sea Research》2002,47(3-4):303-315
Factors controlling the dynamics of suspended particulate matter (SPM), its influence on sea-leaving radiance and in-water optical properties, and the consequences of optical variation for phytoplankton growth, were studied at the ‘Processes of Vertical Exchange in Shelf Seas’ (PROVESS) project's southern North Sea site during April 1999. The optical properties of Netherlands coastal water were not unexpectedly found to be primarily determined by suspended sediment (Case 2) and were classified as Jerlov type 7 ‘relatively turbid coastal water’. During the study period, vertical mixing periodically resuspended optically active particles from the bed fluff layer throughout the water column and into the near-surface layer. These particles influenced sea surface radiance reflectance, and the red/green ratio of radiance reflectance, both of which can be observed by remote sensing. Linear relationships between sea surface radiance reflectance and SPM concentration were primarily determined by the inorganic fraction, as organic SPM varied little in concentration throughout the cruise period. The inorganic fraction was an important scatterer of light at all wavelengths, whereas the organic fraction displayed a greater tendency for light absorption at shorter wavelengths. Although the euphotic layer (depth of 1% surface irradiance) was only 8–10 m deep, vertical mixing ensured that phytoplankton throughout the water column (∼18 m) had access to PAR in excess of the estimated compensation illumination.Growth rates of microplankton (which includes pelagic microheterotrophs as well as phytoplankters) were calculated using an algorithm from the PROWQM model. These ranged from 0.1 to 0.3 d−1, and implied loss rates of 3–25% which were mostly attributed to mesozooplankton grazing. Estimated oxygen production, however, was in near equilibrium with oxygen demand observed in dark bottles, and implied a significant oxygen demand due to detrital respiration and nitrification. This was estimated as 3–6 mmol O2 m−3 d−1.In an order of magnitude timescale analysis, vertical mixing was found to be the single most important factor controlling the dynamics of SPM under mixed or stratified conditions. For a mixed water column microplankton aggregation and fluff layer resuspension also had the potential to redistribute material in the water column several times per day, whilst under stratified conditions horizontal exchange and inorganic particle sinking were more important. Resuspended material in a stratified water column remained below the pycnocline and had little impact on the near-surface layer optics. Other factors varied in importance with the level of stratification, which was recognised as a significant factor in determining the dynamics of SPM in this region of freshwater influence (ROFI).  相似文献   

16.
Measurements of sub-surface light attenuation (Kd), Secchi depth and suspended particulate material (SPM) were made at 382 locations in transitional, coastal and offshore waters around the United Kingdom (hereafter UK) between August 2004 and December 2005. Data were analysed statistically in relation to a marine water typology characterised by differences in tidal range, mixing and salinity. There was a strong statistically significant linear relationship between SPM and Kd for the full data set. We show that slightly better results are obtained by fitting separate models to data from transitional waters and coastal and offshore waters combined. These linear models were used to predict Kd from SPM. Using a statistic (D) to quantify the error of prediction of Kd from SPM, we found an overall prediction error rate of 23.1%. Statistically significant linear relationships were also evident between the log of Secchi depth and the log of Kd in waters around the UK. Again, statistically significant improvements were obtained by fitting separate models to estuarine and combined coastal/offshore data – however, the prediction error was improved only marginally, from 31.6% to 29.7%. Prediction was poor in transitional waters (D = 39.5%) but relatively good in coastal/offshore waters (D = 26.9%).SPM data were extracted from long term monitoring data sites held by the UK Environment Agency. The appropriate linear models (estuarine or combined coastal/offshore) were applied to the SPM data to obtain representative Kd values from estuarine, coastal and offshore sites. Estuarine waters typically had higher concentrations of SPM (8.2–73.8 mg l−1) compared to coastal waters (3.0–24.1 mg l−1) and offshore waters (9.3 mg l−1). The higher SPM values in estuarine waters corresponded to higher values of Kd (0.8–5.6 m−1). Water types that were identified by large tidal ranges and exposure typically had the highest Kd ranges in both estuarine and coastal waters. In terms of susceptibility to eutrophication, large macrotidal, well mixed estuarine waters, such as the Thames embayment and the Humber estuary were identified at least risk from eutrophic conditions due to light-limiting conditions of the water type.  相似文献   

17.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

18.
Distribution patterns of suspended particulate matter (SPM) in the surface water of the North Sea were calculated on the basis of: (1) the 1973–1993 data base of the EC MAST North West European Shelf Programme (NOWESP); and (2) composite reflectance images constructed from data that were collected by the NOAA/AVHRR satellite in 1990–1991. Three models were used for interpolating the in situ data: (1) a distance-weighted interpolation algorithm in which only the in situ data are taken into account; (2) an algorithm in which the ratios between the measured SPM concentrations and reflectances are interpolated, and the distribution of SPM is calculated from the field of interpolated ratios and the synoptic reflectance image; and (3) a distance-weighted algorithm similar to model-1, but with an additional weight factor that is based on local differences in reflectance. The models were tested for periods of 1 and 3 weeks in September 1990 and January 1991, and for the merged set consisting of all in situ data measured in September and January, respectively, between 1973 and 1993. Model-2 and -3 gave largely similar results and had a performance superior to model-1, particularly because they showed more detailed structures in the spatial distributions. Validations and cross-validations showed that the absolute concentrations of SPM predicted by the models were too low at high in situ concentrations and too high at low in situ concentrations. This shortcoming was due to the relatively high degree of smoothing that we applied in the models to account for the large variance of the in situ data. Semivariograms and correlograms indicated that the in situ data had substantial variability and were poorly correlated even at short distances. Only for the 20-year-merged data set did some correlation ( %) exist for stations km from each other. Monthly distributions of SPM were calculated with model-3 and the 20-year data set. The distributions confirm the main patterns previously found by others, such as the turbidity plume crossing the North Sea from southeast England towards the depository in the Skagerrak and the Norwegian Channel. The distributions indicate that materials from this plume may be deposited in the central North Sea in spring and summer and eroded again in autumn and winter. Areas with maximum SPM concentrations were identified off the Belgian coast and north of the Wadden Sea, particularly in winter, from which particles are entrained into the main current in a narrow strip along the continental coast to the German Bight. The results suggest that the two main fluxes of SPM in the North Sea, off England and along the continental coast, remain largely separated until they both end in the Skagerrak.  相似文献   

19.
黄河入海口壬基酚污染分布特征   总被引:2,自引:0,他引:2  
黄河口表、底层水体和沉积物中壬基酚的浓度分布特征研究结果表明,表层水体中壬基酚浓度为15.7~148.6 ng/L,平均值为47.5 ng/L;底层水体中壬基酚浓度为15.8~52.7ng/L,平均值为31.0 ng/L;表层沉积物中壬基酚浓度为2.31~5.47 ng/g,平均浓度为3.87ng/g。黄河口水体中壬基酚浓度呈现由河道向出海口外逐渐降低的趋势;河道中表层沉积物壬基酚含量高于出海口外。黄河口水体中壬基酚浓度低于文献中报道的海河口水体中的浓度,表层沉积物中壬基酚含量低于珠江口文献报道值。水体中壬基酚浓度超过抑制藤壶附着浓度(10 ng/L),河道最上游的站点水体中的浓度超过影响太平洋牡蛎幼苗的发育并增加幼苗死亡率的浓度(100 ng/L)。  相似文献   

20.
Dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and inorganic nutrient concentrations were determined in samples from an area encompassing the Northeast Water Polynya from June to August 1993. In June, still ice-covered polynya area surface waters (PySW) had significantly higher (p<0.05) DOC concentrations (110 μM, n=68) than surface water outside the polynya area (96 μM, n=6). Melting ice and ice algae are suggested as DOC sources. DOC concentrations found in this study are consistent with other studies showing higher DOC concentrations in the Arctic than in other ocean areas. As the productive season progressed, DOC concentrations in Polynya surface water (PySW) decreased (p<0.05) from 110 to 105 μM, while DON concentrations increased (p<0.05) from 5.6 to 6.1 μM, causing a significant decrease (p<0.05) in the C : N ratios of DOM from spring (C : N ratio 20) to summer (C : N ratio 17). We found a significant (p<0.05) decrease in the DOM C : N ratio in all water masses within the polynya area as the productive season progressed. DON was the largest fraction of total dissolved nitrogen (TDN) in PySW and surface waters outside the polynya area. TDN was calculated as the sum of DON, nitrate, nitrite and ammonium concentrations. DON increased (p<0.05) from 62% to 73% of TDN in PySW from spring to summer, a result of increasing DON concentrations and decreasing inorganic nitrogen concentrations over the productive season. The seasonal accumulation of DON and the corresponding decrease in nitrate concentrations in waters with primary production indicate that it is important to take the DON pool into account when estimating export production from nitrate concentration decreases in surface waters. PySW TDN concentrations decreased (p<0.05) from 9.1 (n=61) to 8.6 μM (n=60) from spring (May 25 through June 19) to summer (July 1 through July 27). The seasonal decrease in surface water TDN concentrations corresponded to increases in TDN concentrations in deeper water masses within the Polynya. Most of the TDN increase in deep water was in the form of DON. A possible explanation is that PON was dissolved (partially remineralized) in the water column at mid depths, causing increases in the DON concentration. Transfer of N from PySW (with a short residence time in the polynya area) to Polynya Intermediate Water and deep waters of the Norske and Westwind Trough with multi-year residence times keeps N from leaving the polynya area. In spring, nutrients from degradation of OM in PyIW could support primary production. The role of PyIW as an OM trap could be important in supporting primary production in the polynya area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号