首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Litter layers develop across a diverse array of vegetated ecosystems and undergo significant temporal compositional changes due to canopy phenological phases and disturbances. Past research on temporal dynamics of litter interception has focused primarily on litter thickness and leaf fall, yet forest phenophases can change many more litter attributes (e.g., woody debris, bark shedding, and release of reproductive materials). In this study, weekly changes in litter composition over 1 year were used to estimate litter water storage dynamics and model event‐based litter interception. Litter interception substantially reduced throughfall (6–43%), and litter water storage capacity ranged from 1 to 3 mm, peaking when megastrobili release and liana leaf senescence occurred simultaneously during fall 2015. Tropical storm disturbances occurred during the sampling period, allowing evaluation of how meteorological disturbances altered litter interception. High wind speeds and intense rainfall from 2 tropical storms increased litter interception by introducing new woody debris, which, in this study, stored more water than the pre‐existing woody debris. After 2 extreme weather events, a third (Hurricane Hermine) did not increase woody debris (or litter interception), suggesting that the canopy pool of branches susceptible to breakage had been largely depleted. Needle and bark shedding had minor effects on litter interception. Results suggest that the release of reproductive materials and meteorological disturbances appear to be the major compositional drivers of litter interception beyond their obvious contribution to litter thickness.  相似文献   

2.
Interception is one of the most underestimated processes of the hydrological cycle. However, it amounts to a substantial part of the terrestrial evaporation and forms a direct feedback of moisture to the atmosphere which is important to sustain continental rainfall. Most investigations on interception focus on canopy interception only, whereas the interception by the surface and forest floor may be of same order of magnitude. Moreover there is a regional bias. Most research has been carried out in Europe and America and little is known about interception in Africa. This paper presents a study on forest floor and canopy interception in a savannah ecosystem. The study deals with both interception storage capacity of different vegetation types and the related moisture fluxes. The interception storage capacity of Msasa leaf litter and of Thatching grass is 1.8 mm and 1.5 mm respectively. This water storage capacity is dependent on storm intensity, with high intensity storms resulting in smaller storage capacity than less intensive storms. Canopy interception for the study period averaged 25% of the total rainfall, which is comparable with other studies. More importantly, the study revealed that combining canopy and forest floor interception yields a total interception flux amounting to 37% of the rainfall, or close to 50% of the total evaporation. This is a significant amount which implies that interception of both canopy and forest floor should be included in hydrological modelling and that interception is relevant for water management.  相似文献   

3.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

4.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

5.
In the eastern United States, the use of prescribed fire as a silvicultural technique to manage for desirable upland tree species is increasing in popularity. Bark physical properties such as thickness, density, and porosity have known associations with fire tolerance among species. These physical properties simultaneously influence rainfall interception and canopy storage and thus are of interest across a range of disciplines. Furthermore, while these characteristics are innate to a species, it is unknown whether repeated exposure to fire facilitates physical change in bark structure and whether these changes are consistent among species. To answer these questions, bark samples were collected from mature pine (Pinus taeda L.) and oak (Quercus montana Willd.) trees from sites across the Bankhead National Forest in Alabama, USA under three different burn regimes: 3-year cycle, 9-year cycle, and no fire. Samples were analysed in the laboratory for bulk density, porosity, water storage capacity, and hygroscopicity (the amount of atmospheric water vapour absorbed by bark during non-rainfall conditions). Drying rates of saturated samples under simulated wetting conditions were also assessed. Oak bark had higher bulk density, lower porosity, and dried slower than pine bark. Interestingly, bark from both species had lower bulk density, higher porosity, greater water storage capacity, and dried faster in stands that were burned every 3 years compared to other fire regimes (p < 0.001). In summary, this study demonstrates that prescribed fire regimes in an eastern US forest alter bark structure and thus influence individual tree control on hydrological processes. The increase in bark water storage capacity, coupled with faster bark evaporation times may lead to less water inputs to the forest floor and drier overall conditions. Further investigation of this fire-bark-water feedback loop is necessary to understand the extent of these mechanisms controlling landscape-scale conditions.  相似文献   

6.
This study of litter decomposition was part of an extensive project examining the partitioning of rainfall, the associated chemistry, and litterfall in a dry sclerophyll eucalypt forest and a Pinus radiata plantation in southeastern Australia. The eucalypt species studied were Eucalyptus rossii, E. mannifera and E. dives. The components tested were Pinus radiata needles, leaves of the three eucalypt species, and the bark of E. rossii and E. mannifera. During the first 16 weeks of the decomposition experiment there was a rapid decrease in the concentrations of potassium, magnesium, sodium and phosphorus; this was attributed to leaching. During this period, concentrations of nitrogen and calcium increased for most components. After this period, decomposition became the dominant process, during which the concentrations of most elements increased. By the end of the experiment there was, compared with the initial values, a marked reduction in concentrations of sodium, magnesium and potassium for all eucalypt and pine litter. Calcium concentrations increased through time, with eucalypt bark showing a mid‐period decline. Phosphorus concentrations decreased for the eucalypt leaves but increased substantially for the pine needles and the eucalypt bark. For all components of both the eucalypts and pines, total nitrogen concentrations rose consistently throughout the decomposition period. This was attributed to the formation of nitrogen‐substituted lignin, which was more resistant to decomposition than the other nitrogen‐containing compounds, as well as some nitrogen being stored in the micro‐organisms responsible for decomposition. Because of loss of fragmented litter from the litter bags after 16 weeks, the weight changes could not be confidently measured after this period. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Analyses were made of the concurrent canopy precipitation balances of a seed orchard pine and a mature forest eucalypt during protracted rainfalls selected for their representativeness of the range of variation encountered in the two canopy types at Tallanganda State Forest (ca. 990 m a.s.l.) in the Upper Shoalhaven Valley of southeastern New South Wales. Although their canopy storage capacities were widely different there was consistent interception behaviour in the pine and the eucalypt in all events. Detailed weather data and the time courses of interception loss provided circumstantial evidence for a varying and, at times, substantial influence of cloud or mist deposition on the canopy precipitation balances during rainfall that made a significant contribution to the variation in rainfall interception data. Mean evaporation rates from the saturated canopies during rainfall varied from ?0·02 mm hr?1 up to 0·68 mm hr?1 in the pine; and from ?0·04 mm hr?1 up to 0·13 mm hr?1 in the eucalypt. The implications of cloud-capture during rainfall for studies of rainfall interception in forests of southeastern Australia are discussed.  相似文献   

8.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

9.
Abstract

Abstract The water storage capacity (WSC) of dehiscent fruits that constitute a portion of litter on the forest floor is inadequately understood. This study has quantified the WSC of empty fruiting heads of sweetgum (Liquidambar styraciflua L.) in an effort to reduce the data gap on the WSC and interception of fruit litter. In a laboratory experiment, empty fruiting heads of sweetgum were found to have a mean WSC of 399% of their oven-dried weight. The maximum volume of water detained by fruiting heads in the field was 507 ml container-1. Interception by the empty fruiting heads is considerable, ranging from 2.6 to 218.5% of the incident gross precipitation, with a mean of 42.7%. The data indicate that the interception storage capacity of empty fruiting heads is reached at 2.5 cm depth equivalent of incident gross precipitation. A logarithmic relationship was observed between the volume of water detained by the fruiting heads and the length of time since precipitation. Results of the study suggest that fruit litter may have a considerable influence on the seasonal water balance and ecohydrology of plantations and forests with significant proportions of sweetgum.  相似文献   

10.
Evan Pugh  Eric Gordon 《水文研究》2013,27(14):2048-2060
In regions of western North America with snow‐dominated hydrology, the presence of forested watersheds can significantly influence streamflow compared to areas with other vegetation cover types. Widespread tree death in these watersheds can thus dramatically alter many ecohydrologic processes including transpiration, canopy solar transmission and snow interception, subcanopy wind regimes, soil infiltration, forest energy storage and snow surface albedo. One of the more important causes of conifer tree death is bark beetle infestation, which in some instances will kill nearly all of the canopy trees within forest stands. Since 1996, an ongoing outbreak of bark beetles (Coleoptera: Scolytidae) has caused widespread mortality across more than 600,000 km2 of coniferous forests in western North America, including numerous Rocky Mountain headwaters catchments with high rates of lodgepole pine (Pinus contorta) mortality from mountain pin beetle (Dendroctonous ponderosae) infestations. Few empirical studies have documented the effects of MPB infestations on hydrologic processes, and little is known about the direction and magnitude of changes in water yield and timing of runoff due to insect‐induced tree death. Here, we review and synthesize existing research and provide new results quantifying the effects of beetle infestations on canopy structure, snow interception and transmission to create a conceptual model of the hydrologic effects of MPB‐induced lodgepole pine death during different stages of mortality. We identify the primary hydrologic processes operating in living forest stands, stands in multiple stages of death and long‐dead stands undergoing regeneration and estimate the direction of change in new water yield. This conceptual model is intended to identify avenues for future research efforts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Rainwater interception by leaf litter is an important part of forest hydrological processes. The objective of this study was to investigate the interception storage capacity (ISC) of woodland leaf litter for three leaf distribution patterns, one flow path, two flow paths, and three flow paths, manually simulated via one-by-one leaf connection in the top leaf litter layer. A random pattern served as the control. Three different slopes (0°, 5° and 25°, representing flat, gentle and steep slopes, respectively) and two contrasting leaf litters (needle-leaf litter, represented by P. massoniana leaves, and broad-leaf litter, represented by C. camphora leaves) with a biomass of 0.5 kg/m2 per unit area were applied, at a rainfall intensity of 50 mm/h. Results suggested that leaf distribution pattern greatly impacts litter drainage and hence affects leaf litter ISC. The delaying capacity of litter drainage initiation and ISC of broad-leaf litter were higher than those of needle-leaf litter under the same slope conditions. The maximum ISC (Cmax) and minimum ISC (Cmin) of leaf litter at flat and gentle slopes were higher than those at steep slope. Cmin of the broad-leaf litter was two times higher than that of needle-leaf litter on average. When raindrops reached the litter layer, some were temporarily intercepted by the top litter layer while others infiltrated leaf litter sublayer along leaf edges, and in the process, some rainwater flowed through litter layer and contributed to lateral litter drainage along the potential flow path formed by leaves. The lateral litter drainage of broad-leaf litter was higher than that of needle-leaf litter, and the partitioning of rainwater into lateral litter drainage increased with increases in slope. The difference in leaf litter Cmax among different slopes and leaf shapes decreased with flow path increasing. Therefore, leaf distribution pattern notably impact leaf litter ISC, which is similar to leaf shape and slope impacts. On inclined slopes, avoiding leaf accumulation to form flow path is helpful for improving ISC.  相似文献   

12.
Six small, steep, south-west facing catchments (1.63–4.62 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. The 11-year water balance for the native forest catchments was: rain = streamflow + interception loss + transpiration + seepage (2370mm = 1290mm + 620mm + 360mm + 100mm). In the year after treatment streamflow generally increased by 200–250 mm, except for one treatment (clearfelling, herbicide application, no riparian reserve) where the increase was 550 mm. The catchments were planted with Pinus radiata, but rapid colonization by bracken (Pteridium esculentum) and Himalayan honeysuckle (Leycesteria formosa) led to a rapid decline in streamflow, which returned to pre-treatment levels after an average of about five years. Streamflow yields then continued to decline for another two to three years before stabilizing at a level about 250mm yr?1 lower than pre-treatment levels. At this time the catchments had a dense bracken/honeysuckle understorey beneath 5 m tall pine trees.  相似文献   

13.
D.F. Scott 《Journal of Hydrology》1993,150(2-4):409-432
Streamflow and its storm-flow elements in four catchments were analyzed by the paired catchment method for a response to fire. Prior to burning two of the catchments were vegetated with over-mature fynbos (the indigenous scrub vegetation of the southwestern Cape, South Africa), one was afforested with Pinus radiata and the fourth with Eucalyptus fastigata. One of the fynbos catchments was burned in a prescribed fire in the late dry season. The other catchments burned in wildfires.

Neither of the fynbos catchments showed a change in storm-flow. Annual total flow increases of around 16% were in agreement with model predictions, being related to the reductions in transpiration and interception. The manner of streamflow generation appeared to have remained unaltered despite the presence of some water repellency in the soils and consequent overland flow on some steep midslope sites.

The two timber plantation catchments experienced large and significant increases in storm-flows and soil losses, while total flow increased by 12% in the pine catchment and decreased marginally in the eucalypt catchment. The pattern of the storm-flow increases was similar in both cases. After fire, storm hydrographs were higher and steeper though their duration was little changed. The respective first year increases in the pine and eucalypt catchments were 290% and 1110% for peak discharge, 201% and 92% for quick-flow volume, and 242% and 319% for storm response ratio. These fire effects are considered to be due to changes in storm-flow generation consistent with an increased delivery of overland flow (surface runoff) to the stream channel. This was caused, in part, by reduced infiltration resulting from water repellency in the soils of the burned catchments. Overall the hydrological effects of fire are related to numerous interactive factors, including the degree of soil heating, the vegetation type and soil properties.  相似文献   


14.
Rainfall, throughfall, and stemflow were monitored at 5-min intervals for 3 years in a 120-year-old forest dominated by redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii) at the Caspar Creek Experimental Watersheds, located in northwest California, USA. About 2.5% of annual rainfall reaches the ground as stemflow at the site, while 22.4% is stored on foliage and stems and evaporates before reaching the ground. Comparison of the timing of rainfall and throughfall indicates that about 46% of the interception loss occurs through post-storm evaporation from foliage and 54% is either evaporated during the storm or enters long-term storage in bark. Until bark storage capacity is saturated, the proportion of rainfall diverted to bark storage would be relatively constant across the range of rainfall intensities encountered, reflecting primarily the proportional incidence of rainfall on surfaces contributing to bark storage. In any case, loss rates remain high—over 15%—even during the highest-intensity storms monitored. Clearcut logging in the area would increase effective annual rainfall by 20–30% due to reduction of interception loss, and most of the increase would occur during large storms, thus potentially influencing peakflows and hillslope pore-pressures during geomorphically significant events.  相似文献   

15.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

In studies at San Dimas Experimental Forest, near Glendora, California, the water storage capacity of grasses was proportional to the product of average height and percent of ground cover. The total interception loss for a storm was a function of the storage capacity and the number of showers per storm.  相似文献   

17.
Water resource scarcity and uneven distribution are 2 major environmental issues in China today. Forest structure is a dominant factor that influences hydrological processes, but the specific interactions remain uncertain due to the predominant use of individual or 1‐dimensional forest structure metrics in previous studies. In this study, forest structures in 8 run‐off plots on Mount Miaofeng in north China were parameterized by metrics of different dimensionalities. The relation between canopy interception and forest structure, shrub/litter interception, and forest structure as well as run‐off and forest structure were analysed by regression method and validated by leave‐one‐out cross test. The results showed that canopy interception rates ranged from less than 0.10 all the way to 0.80, affected by forest structure and precipitation, with interception rate decreasing logarithmically as precipitation increased. Forests with a larger canopy area (CA), leaf area index (LAI), and higher average height (H) had a narrow range of canopy interception rates, and forest with larger value of diameters at breath height (DBH), H, LAI, vertical heterogeneity coefficient (T), and structure complexity index (SCI) had higher interception rates. Forests with higher value of DBH, H, and horizontal heterogeneity coefficient (R) had higher shrub/litter interception rates on the forest floor. The run‐off coefficient was only significantly associated with LAI, T, and SCI. The validation test indicated that regression analysis of canopy interception rates and shrub interception are reliable and SCI is a key factor to influence the run‐off coefficient. However, the regression results of litter interception have a relatively large error. According to the results, to reduce the risks of the landslides and floods, forest managers should complicate the canopy and preserve trees with thicker stems and larger canopies. By contrast, to obtain more water resource from run‐off in arid regions, forest managers should harvest trees with large canopies and construct complex vertical structures by intermediate cutting.  相似文献   

18.
The canopy storage capacity of a dry sclerophyll eucalypt forest was determined. This required destructive sampling of three major species of trees and development of a water soakage method for the measurement of water holding capacity of all above ground components. The influence of antecedent weather conditions on canopy storage capacity was assessed. It was shown that the interactive effects of leaf area and water holding capacity of all tree components were such that the estimated canopy storage capacity (0-39 mm) was likely to change little except under extreme conditions of drought and rainfall. The effect of species composition on forest canopy storage capacity is also presented. The wetting processes are described and compared with those discussed in other studies. They are shown to be relevant to the estimation of canopy storage capacity in almost any forest.  相似文献   

19.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Leaf litter interception of water is an integral component of the water budget for some vegetated ecosystems. However, loss of rainfall to litter receives considerably less attention than canopy interception due to lack of suitable sensors to measure changes in litter water content. In this study, a commercially available leaf wetness sensor was calibrated to the gravimetric water content of eastern redcedar (Juniperus virginiana ) litter and used to estimate litter interception in a subhumid eastern redcedar woodland in north‐central Oklahoma. Under controlled laboratory conditions, a strong positive correlation between the leaf wetness sensor output voltage (mV) and measured gravimetric litter water content (? g) was determined: ? g = (.0009 × mV2) ? (0.14 × mV) ? 11.41 (R 2 = .94, p  < .0001). This relationship was validated with field sampling and the output voltage (mV) accounted for 48% of the observed variance in the measured water content. The maximum and minimum interception storage capacity ranged between 1.16 and 12.04 and 1.12 and 9.62 mm, respectively. The maximum and minimum amount of intercepted rain was positively correlated to rainfall amount and intensity. The continuous field measurements demonstrated that eastern redcedar litter intercepted approximately 8% of the gross rainfall that fell between December 16, 2014 and May 31, 2015. Therefore, rainfall loss to litter can constitute a substantial component of the annual water budget. Long‐term in situ measurement of litter interception loss is necessary to gain a better estimate of water availability for streamflow and recharge. This is critical to manage water resources in the south‐central Great Plains, USA where grasslands are rapidly being transformed to woodland or woody dominated savanna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号