首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Y. D. Zhugzhda 《Solar physics》2008,251(1-2):501-514
Two competing theories of sunspot oscillations are discussed. It is pointed out that the normal mode (eigenoscillations) theory is in contradiction with a number of observations. The reasons for this are discussed. The revised filter theory of the three-minute sunspot oscillations is outlined. It is shown that the reason for the occurrence of the multipassband filter for the slow waves is the interference that appears from the multilayer structure of the sunspot atmosphere. In contrast with Zhugzhda and Locans (Sov. Astron. Lett. 7, 25?–?27, 1981) it is shown that along with the Fabry?–?Perot chromospheric passband the cutoff frequency passband and a number of the high-frequency passbands occur. The effect of the nonlinearity of the sunspot oscillations in the upper chromosphere and the transition region is taken into account. The spectra of the distinct empirical models of the sunspot atmosphere are explored. An example of the interpretation of the sunspot oscillations based on the revised filter theory is presented. Only the filter theory can explain the complicated behavior of the oscillations across the sunspot. The observations provide evidence of the nonuniformity of the sunspot atmosphere.  相似文献   

2.
We have analyzed the properties of oscillations in a sunspot based on SDO observations with a duration of 6 h. The 3-min oscillation spectrum has turned out to consist of dozens of spectral lines. The line widths are at the spectral resolution limit. The oscillations in a sunspot have been broken down into individual areas with a size of a few arcseconds, each having its own oscillation spectrum. These oscillation properties cannot be explained in terms of the existing models based on the assumption that the sunspot oscillates as a whole. We propose a model of local oscillations that explains the complex spectrum of the oscillations and their locality. We show that in addition to the chromospheric resonator, there exists a subphotospheric resonator for slow MHD waves. The existence of this resonance layer allows the locality of the oscillations and their complex spectrum to be explained in terms of Parker’s model.  相似文献   

3.
Brynildsen  N.  Maltby  P.  Fredvik  T.  Kjeldseth-Moe  O. 《Solar physics》2002,207(2):259-290
The 3-min oscillations in the sunspot atmosphere are discussed, based on joint observing with the Transition Region and Coronal Explorer – TRACE and the Solar and Heliospheric Observatory – SOHO. We find that the oscillation amplitude above the umbra increases with increasing temperature, reaches a maximum for emission lines formed close to 1–2× 105 K, and decreases for higher temperatures. Oscillations observed with a high signal-to-noise ratio show deviations from pure linear oscillations. The results do not support the sunspot filter theory, based on the idea of a chromospheric resonator. Whereas the filter theory predicts several resonant peaks in the power spectra, equally spaced 1 mHz in frequency, the observed power spectra show one dominating peak, close to 6 mHz. Spectral observations show that the transition region lines contribute less than 13 percent to the TRACE 171 Å channel intensity above the umbra. The 3-min oscillations fill the sunspot umbra in the transition region. In the corona the oscillations are concentrated to smaller regions that appear to coincide with the endpoints of sunspot coronal loops, suggesting that wave propagation along the magnetic field makes it possible for the oscillations to reach the corona.  相似文献   

4.
We review possibilities for an interpretation of oscillations observed in several period bands (3 min., 5 min., 20 min.) and at different heights in sunspot umbrae. At subphotospheric depths two independent resonators are acting: A resonator for slow, quasi-transverse waves can explain the lifetimes of bright umbral dots (≥20 sec.), while a resonator for fast (acoustic), quasi-longitudinal waves could result in the 5-min. oscillations. The acoustic resonator strongly couples with the slow-mode longitudinal resonator at photospheric and chromospheric heights, the latter produces the resonance peaks in the 3-min. period band. The whole scheme of resonance levels generalizes and corroborates a chromospheric resonator model earlier proposed by the present authors. Comparisons with alternative models and recent measurements show that the present model most naturally explains the majority of observed data.  相似文献   

5.
Alan Gore 《Solar physics》1998,178(1):13-28
This paper extends previous investigations of non-adiabatic, oscillatory motions in plane-parallel, gravitationally stratified, magnetized atmospheres by replacing the simple polytropic equilibrium atmosphere with the detailed umbral model atmosphere of Thomas and Scheuer (1982). A normal mode analysis is performed on three cavities defined within the vertical extent of the model. For this work, the coefficient of thermal conductivity is taken to be a function of the temperature and the constant magnetic field is aligned with the direction of gravity. This significantly alters the structure of the eigenspectrum from that of the simpler models using a constant coefficient of thermal conductivity. When evaluated with physical parameters relevant to sunspot umbrae, 5-min and several 3-min oscillations are detected in the cavity from the upper photosphere to the temperature minimum whereas only 3-min oscillations are found in the spatially larger cavity from the upper photosphere to the chromosphere/corona transition region.  相似文献   

6.
Settele  A.  Staude  J.  Zhugzhda  Y.D. 《Solar physics》2001,202(2):281-292
We investigate linear acoustic-gravity waves in three different semi-empirical model atmospheres of large sunspot umbrae. The sunspot filter theory is applied, that is, the resonant transmission of vertically propagating waves is modelled. The results are compared with observed linear sunspot oscillations. For three umbral models we present the transmission coefficients and the energy density of the oscillations with the maxima of transmission. The height dependence of the adiabatic coefficient (the ratio of specific heats) strongly influences the calculated resonance frequencies. The variable can explain the observed closely spaced resonance period peaks. The first resonance in the 3 min range is interpreted as a resonance of the upper chromosphere only, while the higher order peaks are resonances of the whole chromosphere.  相似文献   

7.
The nature of the three-minute and five-minute oscillations observed in sunspots is considered to be an effect of propagation of magnetohydrodynamic (MHD) waves from the photosphere to the solar corona. However, the real modes of these waves and the nature of the filters that result in rather narrow frequency bands of these modes are still far from being generally accepted, in spite of a large amount of observational material obtained in a wide range of wave bands. The significance of this field of research is based on the hope that local seismology can be used to find the structure of the solar atmosphere in magnetic tubes of sunspots. We expect that substantial progress can be achieved by simultaneous observations of the sunspot oscillations in different layers of the solar atmosphere in order to gain information on propagating waves. In this study we used a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere – corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to the optical ones. This implies an MHD wave traveling upward inside the umbral magnetic tube of the sunspot. For the five-minute oscillations the similarity in spectral details could be found only for optical oscillations at the chromospheric level in the umbral region or very close to it. The time delays seem to be similar. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records. Their nature still requires further observational and theoretical study for even a preliminary discussion.  相似文献   

8.
In order to understand the observed oscillations in sunspots we present a new method for calculating the resonant response of a realistic semi-empirical model of the sunspot umbral atmosphere and subphotosphere to magneto-atmospheric waves in a vertical magnetic field. The depth dependence of both the adiabatic coefficient and the turbulent pressure is taken into account. This requires an extension of the wave equations by Ferraro & Plumpton (1958). We compare the coefficients of wave transmission, re flection, and conversion between fast mode and slow mode waves for different assumptions, compare the results with those from earlier modelling efforts, and point out possible sources of mistakes. The depth dependence of the adiabatic coefficient strongly influences the resulting spectrum of resonance frequencies. The condition of a conservation of wave flux is violated if the depth dependence of the turbulent pressure is not properly considered.  相似文献   

9.
The conditions under which the subphotospheric slow-wave resonator can be responsible for the local oscillations in a sunspot have been determined. A rich spectrum of local 3-min oscillations can be produced by the subphotospheric resonator only if the magnetic field in the resonator magnetic flux tube is much weaker than the surrounding sunspot magnetic field. Convective upflows of hot plasma in the sunspot magnetic field satisfy this condition. Consequently, there must be a correlation between the local oscillations and umbral dots, because the latter are produced by convective flows. Various modes of operation of the subphotospheric resonator give rise to wave packets of 3-min oscillations and umbral flashes. It is shown that giant local umbral flashes can emerge under certain conditions for the excitation of oscillations in the subphotospheric resonator.  相似文献   

10.
W. P. Wood 《Solar physics》1990,128(2):353-364
The Uchida and Sakurai (1975), Thomas and Scheuer (1982), and Scheuer and Thomas (1981) theory of umbral oscillations as resonant modes of magneto-acoustic-gravity waves is re-examined. For an isothermal atmosphere it is found that the quasi-Alfvén approximation is not a good approximation to the complete linearized wave equations. The new results presented here show that 3 min umbral oscillation periods are fairly insensitive to magnetic field strength above some critical value. For a detailed model umbra (Thomas and Scheuer, 1982) the calculations presented here show that 3 min umbral oscillations do not depend to any great extent on the level of forcing of the oscillations for those magnetic field strengths which are observed in sunspot umbras. Modes outside the 3 min range appear, as the lowest mode, as the level of forcing is placed at deeper and deeper levels in the solar atmosphere.  相似文献   

11.
We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region NOAA 11242 using scanning spectroscopy in Hα and Ca?ii 8542 Å with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler-velocity maps. Temporal-sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.  相似文献   

12.
An analysis of magneto-acoustic-gravity waves in the case of an isothermal atmosphere permeated by a uniform magnetic field is presented. The general solution is expressed in terms of generalized hypergeometric functions. It can be used in numerical simulation of oscillations in a magnetic atmosphere.

It is shown that the elliptically polarized magneto-acoustic-gravity waves consist of a pair of surface waves and a pair of body waves above the cut-off frequency. The body waves along the magnetic field are similar to acoustic waves in an atmosphere and their cut-off frequency is unaffected by magnetic field. The transverse oscillation decreases with height. For the usual boundary condition, the longitudinal oscillation decreases with height; however, in some cases, it may contain terms that increase with height. The solution is singular on a family of ellipses in the frequency - horizontal wave number plane. Near these ellipses, the wave components grow indefinitely.  相似文献   


13.
本文对充满垂直均匀磁场的等温大气内的磁声重力波做了严格的解析分析,并将其通解表述成广义超几何函数的形式。该解可用于对磁大气内振荡现象的进一步数值模拟研究。对解的分析澄清了若干磁声重力波的传播性质。  相似文献   

14.
Pixelised wavelet filtering (PWF) for the determination of the spatial, temporal, and phase structure of oscillation sources in temporal sequences of 2D images, based upon the continuous wavelet transform, has been designed and tested. The PWF method allows us to obtain information about the presence of propagating and nonpropagating waves in the data and localise them precisely in time and in space. The method is tested on the data sets obtained in microwaves with the Nobeyama Radioheliograph and in the EUV with TRACE. The method reveals fine spatial structuring of the sources of 3-, 5-, and 15-minute periodicities in the microwave and EUV emission generated in sunspot atmospheres. In addition, the PWF method provides us with unique information about the temporal variability of the power, amplitude, and phase narrowband maps of the observed oscillations and waves. The applicability of the method to the analysis of coronal wave phenomena is discussed.  相似文献   

15.
The results of simultaneous observations of oscillations in the chromosphere, transition region, and corona above nine sunspots are presented. The data are obtained through coordinated observing with the Solar and Heliospheric Observatory — SOHO and the Transition Region And Coronal Explorer — TRACE. Oscillations are detected above each umbra. The power spectra show one dominant frequency corresponding to a period close to 3 min. We show that the oscillations in the sunspot transition region can be modeled by upwardly propagating acoustic waves. In the corona the oscillations are limited to small regions that often coincide with the endpoints of sunspot coronal loops. Spectral observations show that oscillations in the corona contribute to the observed oscillations in the TRACE 171 Å channel observations. We show that a recent suggestion regarding a connection between sunspot plumes and 3-min oscillations conflicts with the observations.  相似文献   

16.
We present results of nonlinear, two-dimensional, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after horizontal and vertical oscillatory perturbations are applied to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized by a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the v A<c S atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks, and remains always within the flux tube. It might effectively deposit the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cutoff, nonlinear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cutoff, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.  相似文献   

17.
We obtained three-dimensional interpolated portraits for the radial and torsional oscillations of fragments of 12 sunspots in the form of deviations of their polar coordinates from drift as functions of the time and distance from the sunspot center. We performed a wavelet analysis of the two orthogonal components and determined the dominant oscillation modes; the period varies between 40 and 100 min for different sunspots. We revealed two types of dominant modes, one is associated with the sunspot and the other is associated with its surrounding pores: the central-mode frequency depends on the maximum field strength of the sunspot and decreases from its center toward the boundary, while the peripheral-mode frequency depends on the heliographic latitude and decreases toward the sunspot boundary from the far periphery. We revealed radial variations in frequency and amplitude with a spatial period of 0.8 sunspot radius. The types of dominant modes and the radial variations in oscillation parameters are linked with the subphotospheric structure of an active region—with two types of spiral waves and concentric magnetic-field waves. We estimated the mean pore oscillation energy to be ~1030 erg and found a singular oscillator with a mean energy of ~1031 erg in the penumbra at a distance of 0.8 sunspot radius. We argue that the singular penumbra oscillator is the source of solar flares.  相似文献   

18.
We investigate the effect of a strong large-scale magnetic field on the reflection of high-frequency acoustic modes in rapidly oscillating Ap stars. To that end, we consider a toy model composed of an isothermal atmosphere matched on to a polytropic interior and determine the numerical solution to the set of ideal magnetohydrodynamic equations in a local plane-parallel approximation with constant gravity. Using the numerical solution in combination with approximate analytical solutions that are valid in the limits where the magnetic and acoustic components are decoupled, we calculate the relative fraction of energy flux that is carried away in each oscillation cycle by running acoustic waves in the atmosphere and running magnetic waves in the interior. For oscillation frequencies above the acoustic cut-off, we show that most energy losses associated with the presence of running waves occur in regions where the magnetic field is close to vertical. Moreover, by considering the depth dependence of the energy associated with the magnetic component of the wave in the atmosphere we show that a fraction of the wave energy is kept in the oscillation every cycle. For frequencies above the acoustic cut-off frequency, such energy is concentrated in regions where the magnetic field is significantly inclined in relation to the local vertical. Even though our calculations were aimed at studying oscillations with frequencies above the acoustic cut-off frequency, based on our results we discuss what results may be expected for oscillations of lower frequency.  相似文献   

19.
We study the properties of power maps of solar acoustic waves filtered with direction filters and phase-velocity filters. A direction filter is used to isolate acoustic waves propagating in a narrow range of directions. The acoustic-power map of the waves filtered with a direction filter shows extended reduced-power features behind magnetic regions with respect to the wave direction. A phase-velocity filter is further applied to isolate waves with similar wave paths. In the power maps of the waves filtered with both a direction filter and a phase-velocity filter, a reduced-power image of a sunspot appears behind the sunspot with respect to the wave direction. The distance between the sunspot and the secondary image is consistent with the one-skip travel distance of the wave packet associated with the phase-velocity filter. The waves filtered with direction and phase-velocity filters at the location of the secondary image could be used to probe the sunspot. In the quiet Sun, spatial fluctuations exist in any acoustic-power map. These fluctuations are mainly caused by interference among modes with the same frequency. The fluctuations are random with two properties: They change rapidly with time, and their magnitude decreases with the square root of the number of frames used in computing the acoustic-power map.  相似文献   

20.
Horn  T.  Staude  J.  Landgraf  V. 《Solar physics》1997,172(1-2):69-76
The solar vacuum telescopes VTT and GCT at Tenerife have been used to obtain high-resolution two-dimensional spectro-polarimetric observations of oscillations in the photospheric layers of sunspots. At the GCT the area of the sunspot has been scanned by shifting the spectrograph slit; at the VTT a Fabry–Pérot interferometer has been applied to get narrow-band filtergrams directly and to scan through the line profile.The spectra of velocity oscillations show the known features of closely packed power peaks in bands of periods around 3 min (strengthened) and 5 min (weakened with respect to the quiet Sun). In the same frequency bands the more reliable VTT data show significant oscillations of the magnetic field strength as well, which could not be attributed to disturbing influences. Maximum power of both velocity and magnetic oscillations and a strong correlation between them, in the 3-min band in particular, is found to occur in those parts of the umbra where the magnetic lines of force are parallel to the line of sight. The oscillations are characterized by a marked spatial fine structure and a non-stationary behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号