首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
Trend analysis of temperature parameters in Iran   总被引:1,自引:1,他引:0  
In this study, long-term annual and monthly trends in mean maximum, mean minimum and mean temperature are investigated at 35 synoptic stations in Iran. The statistical significance of trends is assessed by the Mann–Kendall test. Most stations, especially those in western and eastern parts of country, had significant positive trends in monthly temperature time series in summer season. However, the maximum number of stations with the positive trend were observed in April (30 stations), and then in August (29 stations) while the negative trends were seen in February (16 stations) and March (15 stations). On annual scale, most stations in western and southern parts of Iran had significant positive trend. Overall, about 71%, 66% and about 40% of stations had statistically significant trends in mean annual temperature, mean annual minimum temperature and in mean annual maximum temperature, respectively. These results, however, indicate that the climate in Iran is growing warmer, especially in summer.  相似文献   

2.
This study aims to investigate the precipitation trends in Keszthely (Western Hungary, Central Europe) through an examination of historical climate data covering the past almost one and a half centuries. Pettitt’s test for homogeneity was employed to detect change points in the time series of monthly, seasonal and annual precipitation records. Change points and monotonic trends were analysed separately in annual, seasonal and monthly time series of precipitation. While no break points could be detected in the annual precipitation series, a significant decreasing trend of 0.2–0.7 mm/year was highlighted statistically using the autocorrelated Mann-Kendall trend test. Significant change points were found in those time series in which significant tendencies had been detected in previous studies. These points fell in spring and winter for the seasonal series, and October for the monthly series. The question therefore arises of whether these trends are the result of a shift in the mean. The downward and upward shift in the mean in the case of spring and winter seasonal amounts, respectively, leads to a suspicion that changes in precipitation are also in progress in these seasons. The study concludes that homogeneity tests are of great importance in such analyses, because they may help to avoid false trend detections.  相似文献   

3.
This study analyses spatio-temporal trends in precipitation, temperature, and river discharge in the northeast of Iran during recent decades (1953–2013). The Pettitt, SNHT, Buishand, Box-Pierce, Ljung-Box, and McLeod-Li methods were applied to examine homogeneity in time series studied. The nonparametric Mann-Kendall and Sen’s slope estimator tests were used to detect possible significant (p < 0.05) temporal trends in hydrometeorological time series and their magnitude, respectively. For time series with autocorrelation, the trend-free pre-whitening (TFPW) method was used to determine significant trends. To explore spatial distributions of trends, their magnitudes were interpolated by the inverse distance whitening (IDW) method. Trend analysis shows that for daily, monthly, and annual precipitation time series, 12.5, 19, and 12.5 % of the stations revealed significant increasing trends, respectively. For mean temperature, warming trends were found at 38, 23, and 31 % of the stations on daily, monthly, and annual timescales, in turn. Daily and monthly river discharge decreased at 80 and 40 % of the stations. Overall, these results indicate significant increases in precipitation and temperature but decreases in river discharge during recent decades. Hence, it can be concluded that decreasing trends in river discharge time series over the northeast of Iran during 1953–2013 are in response to warming temperatures, which increase the rate of evapotranspiration. Differences between the results of our comprehensive large-scale study and those of previous researches confirm the necessity for more model-based local studies on climatic and environmental changes across the northeast of Iran.  相似文献   

4.
This paper explores urban temperature in Hong Kong using long-term time series. In particular, the characterization of the urban temperature trend was investigated using the seasonal unit root analysis of monthly mean air temperature data over the period January 1970 to December 2013. The seasonal unit root test makes it possible to determine the stochastic trend of monthly temperatures using an autoregressive model. The test results showed that mean air temperature has increased by0.169?C(10 yr)~(-1)over the past four decades. The model of monthly temperature obtained from the seasonal unit root analysis was able to explain 95.9% of the variance in the measured monthly data — much higher than the variance explained by the ordinary least-squares model using annual mean air temperature data and other studies alike. The model accurately predicted monthly mean air temperatures between January 2014 and December 2015 with a root-mean-square percentage error of 4.2%.The correlation between the predicted and the measured monthly mean air temperatures was 0.989. By analyzing the monthly air temperatures recorded at an urban site and a rural site, it was found that the urban heat island effect led to the urban site being on average 0.865?C warmer than the rural site over the past two decades. Besides, the results of correlation analysis showed that the increase in annual mean air temperature was significantly associated with the increase in population, gross domestic product, urban land use, and energy use, with the R~2 values ranging from 0.37 to 0.43.  相似文献   

5.
This paper presents the methods, procedure and results in studying spatial and temporal characteristics of rainfall in Malawi, a data scarce region, between 1960 and 2006. Rainfall variables and indicators from rainfall readings at 42 stations in Malawi, excluding Lake Malawi, were analysed at monthly, seasonal and annual scales. In the study, the data were firstly subjected to quality checks through the cumulative deviations test and the standard normal homogeneity test. Spatial rainfall variability was investigated using the spatial correlation function. Temporal trends were analysed using Mann?CKendall and linear regression methods. Heterogeneity of monthly rainfall was investigated using the precipitation concentration index (PCI). Finally, inter-annual and intra-annual rainfall variability were tested using normalized precipitation anomaly series of annual rainfall series (|AR|) and the PCI (|APCI|), respectively. The results showed that (1) most stations revealed statistically non-significant decreasing rainfall trends for annual, seasonal, monthly and the individual months from March to December at the 5% significance level. The months of January and February (the highest rainfall months), however, had overall positive but statistically non-significant trends countrywide, suggesting more concentration of the seasonal rainfall around these months. (2) Spatial analysis results showed a complex rainfall pattern countrywide with annual mean of 1,095?mm centred to the south of the country and mean inter-annual variability of 26%. (3) Spatial correlation amongst stations was highest only within the first 20?km, typical of areas with strong small-scale climatic influence. (4) The country was further characterised by unstable monthly rainfall regimes, with all PCIs more than 10. (5) An increase in inter-annual rainfall variability was found.  相似文献   

6.
气温的天气和气候记忆性特征分析对于提高气候预测水平具有积极意义。利用济南和青岛1961—2020 年逐日、月和年平均气温资料,运用自相关性函数和标准化频率分布分析了上述时间序列的气温记忆性特征和概率分布特征,并利用结构函数法建立了月、年平均气温距平与日平均气温距平之间的分数阶导数关系。结果表明:(1)济南和青岛的月、年平均气温距平呈现不同程度的记忆性特征,其中年平均气温距平相比于月平均气温距平具有更好的记忆性。(2)济南和青岛的月、年平均气温距平与日平均气温距平之间存在分数阶导数关系,济南和青岛相应的月、年尺度阶数分别为0. 529、0. 665 和0. 553、0. 791,两地的月尺度阶数相近,但青岛略大,青岛的年尺度阶数大于济南,即青岛月和年平均气温距平的记忆性大于济南。(3)济南和青岛的月和年平均气温距平相比于日平均气温距平有不同程度的长尾特征,长尾特征反映了极值温度发生的概率。  相似文献   

7.
Summary Based on observed monthly mean temperatures, it is possible to construct a simple mathematical model of the annual variation of daily mean temperature, the annual temperature wave. For periods of 15 years, the model gives a good correlation with the observed monthly values. The model may be used as a tool for the generation of daily mean temperatures for the corresponding period. It is continuous, differentiable and strictly monotonous between the unique maximum and the minimum of the curve. Consequently, climate quantities of interest for each period can be calculated by the means of simple mathematical analyses. The model was tested by reproducing values for quantities such as annual mean temperature, winter mean temperature, summer mean temperature and temperature sums. Model calculated values, fit values calculated directly from observed data well. The model was also tested by comparing results from two different but neighbouring stations. There was a good correlation between the results from the two stations. Long homogenised time series with 130 years of monthly mean temperature from seven Norwegian stations were analysed by means of the model. It was found that the Frost Free Season Length and the Growth Season Length had increased for all stations by 10–20 days/100 years in the period 1871–1990. The Summer Half-year Length, even if it was defined relative to the annual mean temperature, also increased for all stations by 4–9 days/100 years. The Hot Season Length showed positive trends as well, and for the five stations in Southern Norway, the trends were as high as 18–29 days/100 years. The Heat Sum had increased by 6–11% for southern stations and 20–22% for the northern stations. The results indicate that the level as well as the shape of the annual temperature wave changed in the period from 1871 to 1990. Some of the results for the period 1990–1999 diverge substantially from the trends, possibly indicating significant changes in the shape of the annual temperature wave in this last period.  相似文献   

8.
赤峰地区近50a气候变化诊断分析   总被引:2,自引:1,他引:1  
利用线性回归、累积距平和多项式回归法,对赤峰地区1951—1990年12个气象台站的月、季、年平均气温、最高气温、最低气温序列进行连续性变化趋势分析,确定该区域的气候变化趋势。应用Mann-Kendall法和滑动t检验法检验气温序列变化的不连续性,确定突变时间。结果表明:赤峰地区12个月的平均气温均有升温趋势,增温幅度从0.56℃/10a到0.15℃/10a,其中2月份最强。季节增温最显著的是冬季,其次是秋季和春季,夏季最弱。年平均气温增温率是0.28℃/10a,1988年是变暖的第一年,突变时间在1993年;年平均最低气温增温率是0.29℃/10a,1988年是变暖的第一年,突变时间在1988年;年平均最高气温增温率是0.26℃/10a,1993年是变暖的第一年,突变时间在1993—1996年附近;平均最低气温和最高气温的变暖时间具有不对称性。  相似文献   

9.
We test for the existence of long-term trends in 25- to 50-year long series of monthly rainfall, average river discharges, and minimum air temperatures in Colombia. The Empirical Mode Decomposition method is used as a mathematical filter to decompose a given time series into a finite number of intrinsic mode functions, assuming the coexistence of different frequency oscillatory modes in the series, and that the residual captures the likely existing long-term trends. The Mann-Kendall test for autocorrelated data is used to assess the statistical significance of the identified trends, and the Sen test is used to quantify their magnitudes. Results show that 62 % of river discharge series exhibit significant decreasing trends between 0.01-1.92 m 3 s ?1 per year, which are highly consistent downstream albeit with different ratios between the trend magnitudes and mean discharges. Most minimum temperature series (87 %) exhibit increasing trends (0.01-0.08 °Cyr ?1). Results for precipitation series are inconclusive owing to the mixing between increasing trends (41 %, between 0.1-7.0 mm yr ?1) and decreasing trends (44 %, between 0.1-7.4 mm yr ?1), with no clear-cut geographical pattern, except for the increasing trend identified along the Pacific region, consistent with the increasing trend identified in the strength of the Chocó low-level wind jet off the Pacific coast of Colombia, an important moisture source of continental precipitation. Our results contribute to discerning between signals of climate change and climate variability in tropical South America.  相似文献   

10.
中国近50a气候变化复杂性分析   总被引:1,自引:4,他引:1  
分析了我国气温和降水量变化的兰帕尔-齐夫复杂度空间分布特征,结果表明,平均而言,我国平均气温和降水量变化的复杂度约为10-11,小于随机序列的复杂度13,年平衡气温变化序列的复杂度最小,秋季平均气温变化序列的复杂度最大,季节和年平均气温序列的复杂度小于月平均气温变化序列的复杂度,月总降水量变化序列的复杂度为西部,北部大于南部和东部,我国东南沿海地区气候要素变化的复杂度最大。  相似文献   

11.
In this paper, the characteristics of the long-term precipitation series at Athens (1858–1985) have been statistically analyzed. This study covers both the history and the analysis of the data. The ten-year mean amounts, the monthly and annual amounts averaged over the intervals 1858–1890, 1891–1985, 1951–1980, 1858–1985, the mean number of hours of precipitation and the precipitation intensity are given. The analysis of long-term time series of climatic data (in particular precipitation) is a useful tool for the study of past climate. Different statistical techniques are used in order to depict monthly, seasonal and annual variations, as well as trends, periodicities and recurrence intervals of the amount, intensity and number of precipitation days. The analysis reveals many interesting characteristics. These characteristics of the precipitation regime are extended to a time scale from seasonal variation to a semi-secular trend. The study of such long-term series may be helpful not only in practical applications of rainfall, but also for explaining the possible physical or anthropogenic mechanisms of climatic fluctuations and tendencies. The series of precipitation at Athens is one of the longest in south-eastern Europe.  相似文献   

12.
On the basis of the mean annual and seasonal temperatures from 30 meteorological stations in the Jinsha River Basin (JRB) from 1961 to 2008, the temperature trends are analyzed by using Mann–Kendall test and linear trend analysis. There is an increasing trend in mean annual and seasonal temperatures during this period, and the increasing trends in winter seem more significant than those in the other three seasons. The mean annual temperature has increased by 0.0158°C/year during the last 48 years. There are more than 70% of stations exhibiting increasing trends for annual and seasonal temperatures. The increasing trends in the headwater and upper reaches are more dominant than those in the middle and lower reaches. The largest increase magnitude occurred in the low temperature area, while the largest decrease magnitude occurred in the high temperature area. The decreasing trends are mainly characterized for the maximum temperature time series, and summer is the only season showing a slight and insignificant increasing trend. All the time series showed a statistically significant increasing trend at the level of α?=?0.05 for the minimum temperature time series. As a whole, the increasing magnitude of the minimum temperature is significantly greater than the decreasing magnitude of the maximum temperature.  相似文献   

13.
利用1952—2006年呼和浩特市逐日平均温度统计了热度日(HDD)和冷度日(CDD)变化特征。表明,呼和浩特市HDD以1月最大(918度日),多年年均值为4527度日,55a间呈现比较明显的平稳降低态势,线性趋势率为-145.5度日/10a;CDD以7月最大(42度日);多年年均值为74度日,多年变化呈现波动上升的趋势,线性趋势率为16.5度日/10a。HDD和CDD的日数动态变化与二者多年变化趋势是一致的,分别呈现降低和上升的趋势。呼和浩特市理论供暖和制冷日数分别为271d和38d。  相似文献   

14.
A homogenous climate record (1968-2006) is created for Widdybank Fell (515 m) in the Upper Teesdale National Nature Reserve in northern England, one of the longest high-elevation records in the U.K. Separate time series from Widdybank Fell (1968-1995) and nearby Hunt Hall (1996-2006) are combined using a single mobile automatic weather station (AWS) to calibrate between locations based on 5 years of measurements (2000-2005). After instrumental differences are eradicated, transfer functions are developed based on monthly temperature differences, median monthly ratios of wind speed and mean monthly precipitation totals. The resultant monthly time series show limited trends, although minimum temperatures have increased by 0.38°C/decade. There are no secular trends in mean wind speed or monthly precipitation anomalies, in agreement with other studies which suggest northern England is in a transition area between predicted wetting in northern Europe and drying further south.  相似文献   

15.
Urban/rural fog appearance during the last 27 years in the Belgrade region is analysed using hourly meteorological records from two meteorological stations: an urban station at Belgrade-Vra?ar (BV) and a rural station at Belgrade-Airport (BA). The effects of urban development on fog formation are discussed through analysis of fog frequency trends and comparison with a number of meteorological parameters. The mean annual and the mean annual minimum temperatures were greater at the urban BV station than at the rural BA station. The mean monthly relative humidity and the mean monthly water vapour pressure were greater at the rural than urban station. During the period of research (1988–2014), BA experiences 425 more days with fog than BV, which means that BV experiences fog for 62.68% of foggy days at BA. Trends in the number of days with fog were statistically non-significant. We analysed the fog occurrence during different types of weather. Fog in urban BV occurred more frequently during cyclonal circulation (in 52.75% of cases). In rural BA, the trend was the opposite and fog appeared more frequently during anticyclonic circulation (in 53.58% of cases). Fog at BV occurred most frequently in stable anticyclonic weather with light wind, when a temperature inversion existed (21.86% of cases). Most frequently, fog at BA occurred in the morning and only lasted a short time, followed by clearer skies during the anticyclonic warm and dry weather (22.55% of cases).  相似文献   

16.
Daily and monthly-based water balance computations are made for areas with climates ranging from humid (Coshocton, Ohio) through Mediterranean (Watsonville, California) and semi-arid (Dodge City, Kansas) to arid conditions (Tucson, Arizona). Monthly procedures lead to an underestimate of observed mean annual runoff by 14% in Coshocton, 59% in Tucson, and an overestimate by 9% in Watsonville. Daily balance calculations increase model accuracy. The improvement in runoff estimates by using the daily method is most significant for arid climates. Daily-monthly departures are greater in the semi-arid and arid areas than in the humid and Mediterranean areas. In terms of mean annual runoff, the difference between monthly estimates and daily estimates is 42.5% in arid Tucson, 58.2% in semi-arid Dodge City, but only 8.9% in humid Coshocton and 5.6% in Mediterranean Watsonville. The daily-monthly departures in soil moisture estimates are generally less than 10% in the humid and Mediterranean climates, but well above 50% in most months in the arid and semi-arid climates. Regression analysis indicates the daily-monthly difference in moisture surplus estimates correlates well with the amount of storm clustering within a month. Monthly computations depart increasingly from daily computations as storm clustering increases. The hydrological impacts of changes in storm clustering are studied by forcing the water balance model with daily precipitation sequences based on hypothetical storm scenarios. Total annual moisture surplus tends to increase with increased storm clustering. In the arid and semi-arid climates, the differences between the most and least clustering scenarios equal 35% up to 60% of surplus water generated by normal storms. They are about 20% in the cases of the humid and Mediterranean climates. These results suggest future potential changes in climatic variability such as storm delivery patterns can have significant impacts on water resource availability.  相似文献   

17.
Summary It is not clear whether different measures of dispersion of weather attributes could lead to different conclusions on the nature and direction of climatic variability. The range is commonly used as a measure of variability, while the presence of trend is typically studied on seasonal and/or annual basis. In this study, we used daily average temperature values at 15 sites spatially distributed across Canada to test for the presence of trend in variability (measured by the range, the standard deviation and the IQR) using a bootstrap method. The length of the series varied from site to site, ranging from 30 to 151 years. The analysis was undertaken for each month, each season, and the annual data. When calculating the standard deviations, estimates of the annual mean temperatures were used to make the results invariant to the presence of trend in mean. The monthly and seasonal analysis revealed the presence of either increasing or decreasing variability for some months and some seasons. The results for the annual data were not so revealing, especially at sites where some months have increasing while others have decreasing trends. The results across sites did not exhibit a clear geographic pattern. However, there were consistently increasing trends in variability at Toronto and St. Johns during non-summer months, and mostly decreasing trend in Edmonton. The significance of trend in variability using the range and the standard deviation were consistent in less than 30% of the time across sites and across the monthly, seasonal and annual aggregations. There was not much agreement between the standard deviation and the IQR either, highlighting the importance of the choice of a measure of variability.  相似文献   

18.
Reference crop evapotranspiration (ETo) is one of the most important links in hydrologic circulation and greatly affects regional agricultural production and water resource management. Its variation has drawn more and more attention in the context of global warming. We used the Penman-Monteith method of the Food and Agriculture Organization, based on meteorological factors such as air temperature, sunshine duration, wind speed, and relative humidity to calculate the ETo over 46 meteorological stations located in the Yangtze River Delta, eastern China, from 1957 to 2014. The spatial distributions and temporal trends in ETo were analyzed based on the modified Mann-Kendall trend test and linear regression method, while ArcGIS software was employed to produce the distribution maps. The multiple stepwise regression method was applied in the analysis of the meteorological variable time series to identify the causes of any observed trends in ETo. The results indicated that annual ETo showed an obvious spatial pattern of higher values in the north than in the south. Annual increasing trends were found at 34 meteorological stations (73.91 % of the total), which were mainly located in the southeast. Among them, 12 (26.09 % of the total) stations showed significant trends. We saw a dominance of increasing trends in the monthly ETo except for January, February, and August. The high value zone of monthly ETo appeared in the northwest from February to June, mid-south area from July to August, and southeast coastal area from September to January. The research period was divided into two stages—stage I (1957–1989) and stage II (1990–2014)—to investigate the long-term temporal ETo variation. In stage I, almost 85 % of the total stations experienced decreasing trends, while more than half of the meteorological stations showed significant increasing trends in annual ETo during stage II except in February and September. Relative humidity, wind speed, and sunshine duration were identified as the most dominant meteorological variables influencing annual ETo changes. The results are expected to assist water resource managers and policy makers in making better planning decisions in the research region.  相似文献   

19.
Temperature data from 29 synoptic stations in Iran for a period of 40?years (1966–2005) were analyzed to test for the existence of monotonic trends and shift changes in the annual, seasonal, and monthly mean air temperature series using the Mann–Kendall and Mann–Whitney tests. The influences of significant lag-1 serial correlation were eliminated from data by the trend-free pre-whitening method prior to the trend analysis. The magnitude of the temperature trends was derived from the Theil–Sen’s slope estimator. It was found that annual mean air temperature increased at 25 out of the 29 stations, of which 17 stations showed significant monotonic trends. The magnitude of the annual mean air temperature trends averagely was (+)0.224°C per decade. Most of the stations with the significant positive monotonic trends had a significant upward shift change. The analysis indicated that the change point year of the significant upward shift changes was 1972 for the whole stations except the coastal ones. Moreover, the strongest monotonic increasing trends and upward shift changes were observed in summer especially in August and September. The spatial analysis of the mean air temperature trends revealed the highest numbers of significant monotonic trends in the big cities of Iran. These findings provide more insights for better understanding of regional temperature behavior in the study area.  相似文献   

20.
Summary The present paper is an analysis of mean maximum and minimum temperatures carried out on monthly, seasonal and annual time-scales examining the data collected at 171 meteorological stations over a region in the North West of Spain (Castilla y León) for the period 1961–1997. Various statistical tools were used to detect and describe significant trends in these data. The magnitude of the trends was derived from the slopes of the regression lines using the least squares method, and the statistical significance was determined by means of the non-parametric Mann-Kendall test. The pattern obtained is quite similar for mean maximum and minimum temperatures with increases in all months of the year, and in the annual series. The seasonal series corresponding to winter and summer also followed this same pattern. Spring and autumn were found to be more irregular. Because maximum temperature increased at a higher rate than minimum temperature in this period, an increase in the annual diurnal temperature range (DTR) was observed. The correlation between the North Atlantic Oscillation (NAO) and the regional maximum and minimum temperatures and DTR series for the period 1961–1997 have also be studied in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号