首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The IceCube experiment has detected two neutrinos with energies between 1 and 10 PeV. They might have originated from Galactic or extragalactic sources of cosmic rays. In the present work we consider hadronic interactions of the diffuse very high energy cosmic rays with the interstellar matter within our Galaxy to explain the PeV neutrino events detected in IceCube. We also expect PeV gamma ray events along with the PeV neutrino events if the observed PeV neutrinos were produced within our Galaxy in hadronic interactions. PeV gamma rays are unlikely to reach us from sources outside our Galaxy due to pair production with cosmic background radiation fields. We suggest that in future with simultaneous detections of PeV gamma rays and neutrinos it would be possible to distinguish between Galactic and extragalactic origins of very high energy neutrinos.  相似文献   

2.
Gamma ray burst (GRB) fireballs provide one of very few astrophysical environments where one can contemplate the acceleration of cosmic rays to energies that exceed 1020 eV. The assumption that GRBs are the sources of the observed cosmic rays generates a calculable flux of neutrinos produced when the protons interact with fireball photons. With data taken during construction IceCube has already reached a sensitivity to observe neutrinos produced in temporal coincidence with individual GRBs provided that they are the sources of the observed extra-galactic cosmic rays. We here point out that the GRB origin of cosmic rays is also challenged by the IceCube upper limit on a possible diffuse flux of cosmic neutrinos which should not be exceeded by the flux produced by all GRB over Hubble time. Our alternative approach has the advantage of directly relating the diffuse flux produced by all GRBs to measurements of the cosmic ray flux. It also generates both the neutrino flux produced by the sources and the associated cosmogenic neutrino flux in a synergetic way.  相似文献   

3.
Identifying the accelerators that produce the Galactic and extragalactic cosmic rays has been a priority mission of several generations of high energy gamma ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes, and the construction of CTA, a ground-based gamma ray detector that will map and study candidate sources with unprecedented precision. In this paper, we revisit the prospects for revealing the sources of the cosmic rays by a multiwavelength approach; after reviewing the methods, we discuss supernova remnants, gamma ray bursts, active galaxies and GZK neutrinos in some detail.  相似文献   

4.
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.  相似文献   

5.
Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review, we will briefly revisit the rationale for constructing kilometer-scale neutrino detectors and summarize the status of the field.  相似文献   

6.
A54 Cosmic Ray Acceleration in Galactic Wind Shocks A71 Detection of Ultra‐High Energy Cosmic Rays and Neutrinos with LOFAR A80 Status of the gravitational‐wave detector GEO600 A87 Recent Results and Future of the MAGIC gamma‐ray telescope A92 Cosmic ray detection with the radio technique A93 Cosmic Ray Physics with IceCube A94 The resonance‐like gamma‐ray absorption processes for use in astrophysics A97 Geometry reconstruction of air shower fluorescence detectors revisited A102 Supermassive Binary Black Holes & Radio Jets A108 Muonic Component of Air Showers Measured by KASCADE‐Grande A110 Towards new frontiers: observation of photons with energies above 1018 eV A112 The IceCube Neutrino Telescope A114 The ground‐based gamma‐ray observatory CTA A116 IceCube: Recent Results and Prospects A117 Particle Physics with AMANDA and IceCube A118 Altitude dependence of fluorescence light emission by extensive air showers A120 Neutrino‐induced cascades in AMANDA & IceCube A122 Enhancement Telescopes for the Pierre Auger Southern Observatory in Argentina A123 Proton spectra from relativistic shock environments in AGN and GRBs A124 The Baikal Neutrino Telescope – Physics Results A127 Searches for point‐like sources of cosmic neutrinos with IceCube A128 The MAGIC/IceCube Target of Opportunity Programtest run A131 Supernova detection with IceCube: from low to high energy neutrinos A132 Measurement of the UHECR energy spectrum from hybrid data of the Pierre Auger Observatory A133 Extension of IceCube at Lower Energy: the Use of AMANDA as Nested Array and the Future Prospectives A135 Searching for neutrinos with the Pierre Auger Observatory A138 Search for Transient Emission of Neutrinos in IceCube A140 Acoustic Neutrino Detection in Antarctic Ice A159 AMANDA limits on the diffuse muon‐neutrino flux: physics implications A164 Investigation of the Radio Emission of Cosmic Ray Air Showers with LOPES A168 The Northern Site of the Pierre Auger Observatory A170 Shower reconstruction and size spectra with KASCADE‐Grande data A171 Neutrinos from Gamma Ray Bursts: predictions and limits from AMANDA‐II data A172 Simulation study of shower profiles from ultra‐high energy cosmic rays A174 Upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger Observatory A176 Astrophysics at MeV energies A180 Study of the Cosmic Ray Composition above 0.4 EeV using the Longitudinal Profiles of Showers observed at the Pierre Auger Observatory A185 Backgrounds for UHE horizontal neutrino showers A186 The Front‐End Cards of the Pierre Auger Surface Detectors: Test Results and Performance in the Field A187 Monte Carlo Studies for MAGIC‐II A194 Measuring the proton‐air cross section from logitudinal air shower profiles A195 The UHECR energy spectrummeasured at the Pierre Auger Observatory A203 Highlights of Observations of Galactic Sources with the MAGIC telescope A207 Adesign study for a 12.5 m ∅︁ Imaging Air Cherenkov Telescope for ground‐based γ ‐ray astronomy A210 The Future of Long‐Wavelengths Radio‐Astronomy in Germany: LOFAR and GLOW A211 Online Monitoring of the Pierre Auger Observatory A216 OPTIMA‐Burst – Catching GRB Afterglows (and other Transients) with High Time Resolution A227 JEM‐EUSO mission A232 Rapid Variations in AGN: Clues on Particle Accelerators A235 Systematic search forVHEgamma‐ray emission from X‐ray bright high‐frequency peaked BL Lac objects A237 Prospects for GeV Astronomy in the Era of GLAST A241 Improvements of the energy reconstruction for the MAGIC telescope by means of analysis and Monte Carlo techniques A265 Discovery of VHE γ ‐rays from BL Lacertae with the MAGIC telescope A266 Results of two observation cycles of LS I+61°303 with the MAGIC telescope A267 Wide Range Multifrequency Observations of Northern TeV Blazars A269 Diffusive and convective cosmic ray transport in elliptical galaxies  相似文献   

7.
Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.  相似文献   

8.
《Astroparticle Physics》2012,35(10):615-624
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube’s sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.  相似文献   

9.
Long TeV γ-ray campaigns have been carried out to study the spectrum, variability and duty cycle of the BL Lac object Markarian 421. These campaigns have given some evidence of the presence of protons in the jet: (i) Its spectral energy distribution which shows two main peaks; one at low energies (∼1 keV) and the other at high energies (hundreds of GeV), has been described by using synchrotron proton blazar model. (ii) The study of the variability at GeV γ-rays and X-rays has indicated no significant correlation. (iii) TeV γ-ray detections without activity in X-rays, called “orphan flares” have been observed in this object.Recently, The Telescope Array Collaboration reported the arrival of 72 ultra-high-energy cosmic rays with some of them possibly related to the direction of Markarian 421. The IceCube Collaboration reported the detection of 37 extraterrestrial neutrinos in the TeV–PeV energy range collected during three consecutive years. In particular, no neutrino track events were associated with this source. In this paper, we consider the proton–photon interactions to correlate the TeV γ-ray fluxes reported by long campaigns with the neutrino and ultra-high-energy cosmic ray observations around this blazar. Considering the results reported by The IceCube and Telescope Array Collaborations, we found that only from ∼25% to 70% of TeV fluxes described with a power law function with exponential cutoff can come from the proton–photon interactions.  相似文献   

10.
The AMANDA-II telescope, operated by the IceCube collaboration, is currently the world’s most sensitive telescope to fluxes of neutrinos from individual sources. A data sample of 4282 neutrino induced events collected in 1001 days of detector livetime during the years 2000–2004 have now been analyzed looking for a neutrino signal from point-like sources. A sensitivity to fluxes of of d Φ/dE=1.0×10−10(E/TeV)−2 TeV−1 cm−2s−1 was reached in the energy range between 1.7 TeV and 2.4 PeV. So far no statistically significant localized excess of events over the background of atmospheric neutrinos has been found, which would be ascribed to a neutrino source. However, the flux upper limits derived from the non-observation of a signal are comparable to observed fluxes of high energy gamma rays from blazars and within the range of current models for neutrino emission from selected sources. Possible constraints on these models are discussed.   相似文献   

11.
We study the individual contribution to secondary lepton production in hadronic interactions of cosmic rays (CRs) including resonances and heavier secondaries. For this purpose we use the same methodology discussed earlier [C.-Y. Huang, S.-E. Park, M. Pohl, C.D. Daniels, Astropart. Phys. 27 (2007) 429], namely the Monte-Carlo particle collision code DPMJET3.04 to determine the multiplicity spectra of various secondary particles with leptons as the final decay states, that result from inelastic collisions of cosmic-ray protons and Helium nuclei with the interstellar medium of standard composition. By combining the simulation results with parametric models for secondary particle (with resonances included) for incident cosmic-ray energies below a few GeV, where DPMJET appears unreliable, we thus derive production matrices for all stable secondary particles in cosmic-ray interactions with energies up to about 10 PeV.

We apply the production matrices to calculate the radio synchrotron radiation of secondary electrons in a young shell-type SNR, RX J1713.7-3946, which is a measure of the age, the spectral index of hadronic cosmic rays, and most importantly the magnetic field strength. We find that the multi-mG fields recently invoked to explain the X-ray flux variations are unlikely to extend over a large fraction of the radio-emitting region, otherwise the spectrum of hadronic cosmic rays in the energy window 0.1–100 GeV must be unusually hard.

We also use the production matrices to calculate the muon event rate in an IceCube-like detector that are induced by muon neutrinos from high-energy γ-ray sources such as RX J1713.7-3946, Vela Jr. and MGRO J2019+37. At muon energies of a few TeV, or in other word, about 10 TeV neutrino energy, an accumulation of data over about 5–10 years would allow testing the hadronic origin of TeV γ-rays.  相似文献   


12.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

13.
The energy spectra of primary cosmic rays were studied in the energy interval 150 to 450 MeV/nucl by using balloon-borne cellulose-nitrate solid-state plastic detector. Effects of solar modulation were studied using the theoretical spectrum ofH 1 nuclei near the solar minimum in 1964 as the demodulated spectrum. The ‘force-field’ potential which fit the experimental results was estimated to be 270 MeV/nucl.  相似文献   

14.
《Astroparticle Physics》2012,35(6):312-324
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies Eν > 1011 GeV is derived from acoustic data taken over eight months.  相似文献   

15.
We consider the production of high energy neutrinos and cosmic rays in radio-quiet active galactic nuclei (AGN) or in the central regions of radio-loud AGN. We use a model in which acceleration of protons takes place at a shock in an accretion flow onto a supermassive black hole, and follow the cascade that results from interactions of the accelerated protons in the AGN environment. We use our results to estimate the diffuse high energy neutrino intensity and cosmic ray intensity due to AGN. We discuss our results in the context of high energy neutrino telescopes under construction, and measurements of the cosmic ray composition in the region of the “knee” in the energy spectrum at 107 GeV.  相似文献   

16.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

17.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space – unless the baryonic loading is much larger than previously anticipated.  相似文献   

18.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

19.
We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about −3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.  相似文献   

20.
Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. From energetics considerations we anticipate on the order of 10–100 neutrino events per kilometer squared per year pointing back at the source(s) of both galactic and extragalactic cosmic rays. In this context, we discuss the results of the AMANDA and IceCube neutrino telescopes which will deliver a kilometer-square-year of data over the next 3 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号