首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the spatial and spectral characteristics of the 3.5 to 30.0 keV emission in a solar flare of 9 May, 1980. We find that: (a) A classical thick target interpretation of the hard X-ray burst at energies E 10 keV implies that approximately all the electrons contained within the flare loop(s) have to be accelerated per second. (b) A thermal model interpretation does not fit the data, unless its characteristics are such that it does not represent an efficient alternative to the acceleration model. We thus conclude that: (c) Acceleration does take place during the early phase of the impulsive hard X-ray event, but substantial amount of the emission at low (<20 keV) energies is of thermal origin. (d) We show the evolution of the energy content in the flare volume, and find that the energy input requirements are such that 102 erg cm-3 s-1 have to be released within the flare structure(s), for a period of time comparable to that of the hard X-ray burst emission. We also point out that although the main flare component ( 90% of the soft X-ray emission) was confined to a compact magnetic kernel, there are evidences of interaction of this structure with a larger field structure connecting towards the leading portion of the active region, where secondary H brightenings were observed.  相似文献   

2.
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations.  相似文献   

3.
We present 4.9 GHz observations of an impulsive radio burst observed at the Very Large Array on 1981 May 16. The flare occurred in a complex active region containing several spots. The radio burst lay at the edge of an active-region microwave source, close to a neutral line. The compact burst showed morphological evidence for the presence of two loops in the rise phase, with the subsequent burst peak lying between these loops. This suggests that interaction between the loops played some role in the initiation of the flare. The flare spectrum is consistent with thermal gyrosynchrotron emission. The main microwave peak was displaced from the nearest H kernels by about 10, but there is strong evidence for post-flare loops coincident with the H kernels during the later stages of the event.  相似文献   

4.
High velocity H ejections were observed in association with an important solar flare on March 12, 1969, and simultaneously with Type II followed by Type IV radio emission detectable to 3–4 solar radii (R ) from the center of the Sun. From a sequence of H coronagraph photographs, trajectories and velocity determinations were made for fragments of the flare spray which was visible to a distance of 2 R . The temporal and spatial relationship between the optical and radio events is discussed. The mass motions appear to be controlled by the gravitational field while the fragments move in the direction of the open magnetic field lines.  相似文献   

5.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

6.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

7.
The flare of 12 November 1980, 0250 UT, in Active Region 2779 (NOAA classification) was studied by using X-ray images obtained with the Hard X-Ray Imaging Spectrometer aboard NASA's Solar Maximum Mission. In a ten-minute period, between about 0244 and 0254 UT, some five short-lived impulsive bursts occurred. We found that the so-called hard bursts ( 15 keV) are also detectable in low energy images. During that 10 min period - the impulsive phase - the heat input into the flare and the total number of energetic electrons increased practically exponentially, to reach their maximum values at 0254 UT. At the end of that period, when the thermal energy content of the flare was largest, a burst was observed, for the first time, to spread in a broad southern direction from an initially small area with a speed of about 50 km s–1. We have called this phenomenon a coronal explosion.Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

8.
In a previous publication (1977) the author has constructed a family () of long-periodic orbits in the Trojan case of the restricted problems of three bodies. Here he constructs the domain of the analytical solution of the problem of the motion, excluding the vicinity of thecritical divisor which vanishes at the exact commensurability of the natural frequencies 1 and 2. In terms of thecritical masses mj(2), or the associatedcritical energies j 2 (m), is the intersection of the intervals ofshallow resonance, of the form. Inasmuch as the intervals |2j 2 |<j ofdeep resonance aredisjoint, it follows that (1) the disjointed family () embraces the tadpole branch, 021, lying in: and (2) despite the clustering of j 2 (m) atj=, the family () includes, for 2=1, an asymptoticseparatrix that terminates the branch in the vicinity of the Lagrangian pointL 3.In a similar manner, the family () can be extended to the horseshoe branch 1<2 2 2 .  相似文献   

9.
Résumé On étudie l'effet du champ magnétique terrestre sur le mouvement d'un satellite autour de son centre de gravité. Le satellite possède une symétrie dynamique et un moment magnétique propre dirigé suivant l'un des axes principaux d'inertie; le champ magnétique terrestre est assimilé au champ d'un dipôle dont les pôles coïncident avec les pôles terrestres. On néglige les perturbations de la trajectoire du satellite qui est supposée circulaire. La position du satellite par rapport à son centre de gravité est repérée dans un système d'axes lié au plan de l'orbite et le mouvement est décrit à l'aide des angles d'Euler , , . La symétrie sphérique et le choix du moment magnétique sur l'un des axes d'inertie permettent d'éliminer l'angle .La solution pour et peut se développer en séries de puissance d'un petit paramètre . Les séries convergent pour ||<1.Lorsque le moment magnétique est faible on la rotation du satellite rapide, est faible. Les développements sont calculés effectivement jusqu'à 2.La comparaison des résultats avec l'intégration numérique du système d'équations différentielles est satisfaisante.
The effect of the Earth's magnetic field on the motion of a satellite around its centre of mass is investigated. The satellite is assumed to be dynamically symmetric and to be magnetized in the same direction as that of a principal axis. The Earth's magnetic field is assumed to be a dipole field whose poles coincide with the rotation poles of the Earth. The satellite's orbit is circular and perturbations are neglected. The position of the satellite with respect to its centre of mass is given with respect to a coordinate system fixed in the orbital plane and the motion is described by Euler's angles , , . The spherical symmetry and the coincidence of the magnetic moment with a principal axis allow one to eliminate the angle .The solution for and , can be expanded in power series for small parameter .The series converge for <1. is small for a small magnetic moment or a high angular velocity of the rotating satellite. The terms of the expansion of the series are calculated up to 2.The comparison of the results with those obtained by numerical integration of the differential equation is satisfactory.
  相似文献   

10.
Melrose  D. B.  McClymont  A. N. 《Solar physics》1982,113(1-2):241-248
We consider two aspects of solar flares from the point of view of circuit theory. First, we show that the so-called dynamo models, which invoke an analogy between the Earth's magnetosphere-ionosphere circuit and the solar corona-photosphere circuit, are illfounded. Second, we consider the rate of coronal energy release in the impulsive phase of a modest flare, and show that, if the energy going into mass motion can be neglected, the corona must present a resistance of about 10–3 . Classical resistivity, even in a highly filamented circuit, cannot provide so high a resistance. Anomalous resistivity due to ion sound turbulence can provide the required resistance in this case, but is insufficient to explain the very high power levels inferred in some fast spikes.  相似文献   

11.
Radio-silent -ray flares are solar flares that lack any significant emission in the (non-thermal) radio wave band during their impulsive hard X-ray and -ray emission phases. Flares with extremely suppressed long-wavelength spectra have previously been reported by White et al. (1992) and have been discussed in different context by Hudson and Ryan (1995). A striking example of a radio-silent flare was observed by SMM during the onset of the 6 March 1989 energetic -ray flare. We argue that the absence of radio emission at wavelengths longer than microwave wavelengths is an indication of the compactness of the flare rather than that the flare did not exhibit non-thermal properties. Probably the flare site was restricted to altitudes above the photosphere in a newly emerging loop configuration lower than the equivalent altitude corresponding to an emission frequency of 1.4 GHz. This implies the presence of a dense and highly magnetized closed field configuration confining the electron component which causes the impulsive -ray continuum. Reconnection in such a configuration did not lead to open magnetic fields and streamer formation. Acceleration of particles in the and hard X-ray bursts was restricted to closed field lines. Thermal expansion of the loop system may subsequently lead to the generation of radially propagating blast waves in the solar corona which are accompanied by type II solar radio bursts and decimetre emissions. The emission during the onset of the flare was dominated by a continuum originating from electron bremsstrahlung at X-ray and -ray energies with only little evidence for the presence of energetic ions. It is, therefore, concluded that energetic electrons have been primary and not secondary products of the particle acceleration process.  相似文献   

12.
The profiles of six photospheric absorption spectral lines (Fei 5250 Å, Fei 5324 Å, Fei 5576 Å, Cai 5590 Å, Cai 6103 Å and Fei 6165 Å), measured in the kernel of a 2N solar flare and in a quiet-Sun area, were compared. The observations were carried out with an echelle spectrograph of the Crimean Astrophysical Observatory. It was shown that, compared to the quiet-Sun profiles, the flare profiles are shallower in the line core and are less steep in the wings. Therefore, measurements of the longitudinal magnetic field made with a magnetograph system which uses the Cai 6103 Å  spectral line, can be underestimated by 18–25% in areas of bright H ribbons of a moderate solar flare. Modeling of the solar photosphere performed by using a synthesis method showed that, in a solar flare, the enhanced core emission seems to be related to heating of the photosphere by the flare, whereas the decrease of the slope of the wings was presumably caused by the inhomogeneity of the photospheric magnetic field.  相似文献   

13.
We obtained a complete set of H, Ca 8542 and He I 10830 spectra and slit-jaw H images of the C5.6 limb flare of 1 August 2003 using the Multi-channel Infrared Solar Spectrograph (MISS) at Purple Mountain Observatory. This flare was also observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and partially by the Extreme-ultraviolet Imaging Telescope (EIT) on SOHO. This flare underwent a rapid rising and expanding episode in the impulsive phase. All the H, Ca 8542 and He I 10830 profiles of the flare are rather wide and the widest profiles were observed in the middle bright part of the flare instead of at the flare loop top near the flare maximum. The flare manifested obvious rotation in the flare loop and the decrease of the rotation angular speed with time at the loop-top may imply a de-twisting process of the magnetic field. The significant increases of the Doppler widths of these lines in the impulsive phase reflect quick heating of the chromosphere, and rapid rising and expanding of the flare loop. The RHESSI observations give a thermal energy spectrum for this flare, and two thermal sources and no non-thermal source are found in the reconstructed RHESSI images. This presumably indicates that the energy transfer in this flare is mainly by heat conduction. The stronger thermal source is located near the solar limb with its position unchanged in the flare process and spatially coincident with the intense EUV and H emissions. The weaker one moved during the flare process and is located in the H dark cavities. This flare may support the theory of the magnetic reconnections in the lower solar atmosphere.  相似文献   

14.
Recently Gosling (1993) examined the interplanetary consequences of solar activity, and suggested that the coronal mass ejection (CME) was the prime driver of most disturbances (i.e., interplanetary shocks, high-energy particles, geomagnetic storms, etc.) and that the solar flare was relatively unimportant in this context. He coined the phrase Solar Flare Myth. Since that paper there has been much debate on the origin of interplanetary disturbances - most people sitting squarely in the flare or CME camp. vestka (1995) has attacked Gosling's conclusions on the grounds that it is misleading to ignore the flare, and that past flare classifications were perfectly adequate for explaining the observations described by Gosling. This paper is a comment on vestka's report and an attempt to put the Solar Flare Myth into perspective - indeed it is an attempt to view the solar flare/CME phenomena in a more constructive light.  相似文献   

15.
The emission spectra and their time variations of gyro-synchrotron emission from an ensemble of energetic electrons are computed for some initial power-law distributions of the electron energies N()d= with =2 or 4. The spectra and decay curves of the emission are compared with solar microwave bursts in order to separately estimate the magnetic field H and . From a limited number of observations, we have 3 and H 103 gauss for the microwave impulsive bursts, and 2 and H (500–1000) gauss for the microwave type-IV bursts.  相似文献   

16.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

17.
Recently, Wheatland and Litvinenko (2001) have suggested that over the solar cycle both the flaring rate and the magnetic free energy in the corona lag behind the energy supply to the system. To test this model result, we analyzed the evolution of solar flare occurrence with regard to sunspot numbers (as well as sunspot areas), using H flare data available for the period 1955–2002, and soft X-ray flare data (GOES 1–8 Å) for the period 1976–2002. For solar cycles 19, 21, and 23, we find a characteristic time lag between flare activity and sunspot activity in the range 1015 months, consistent with the model predictions by Wheatland and Litvinenko (2001). The phenomenon turns out to be more prominent for highly energetic flares. The investigation of solar activity separately for the northern and southern hemisphere allows us to exclude any bias due to overlapping effects from the activity of both hemispheres and confirms the dynamic relevance of the delay phenomenon. Yet, no characteristic time lag >0 is found for solar cycles 20 and 22. The finding that in odd-numbered cycles flare activity is statistically delayed with respect to sunspot activity, while in even-numbered cycles it is not, suggests a connection to the 22-year magnetic cycle of the Sun. Further insight into the connection to the 22-year magnetic cycle could possibly be gained when a 22-year variation in the energy supply rate is taken into account in the Wheatland and Litvinenko (2001) model. The existence of a 22-year modulation in the energy supply rate is suggested by the empirical Gnevyshev – Ohl rule, and might be caused by a relic solar field.  相似文献   

18.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

19.
You  Jianqi  Li  Hui  Fan  Zhongyu  Sakurai  Takashi 《Solar physics》2001,203(1):107-117
The 3N/X3.3 flare of 28 November 1998 was observed in multiple wavelength simultaneously. The available data include H images, spectra in Hei 1083 nm and Caii 854.2 nm from Purple Mountain Observatory (PMO), soft X-ray (SXR) and hard X-ray (HXR) images and flux from Yohkoh. Morphological relationship investigation and spectral analysis of these data show: (1) The sudden brightening at loop top above the active region and the steep increase of SXR flux before flare onset suggest that the corona there had already been heated to some extent in the preflare phase. (2) The scales of the Caii 854.2 nm emission areas are very similar to those of the H line, but the emission profiles look like those of the Caii K line. Most of the Hei 1083 nm emissions exist in the bright H kernels and can last to the decay phase. (3) Flare spectra show that line shift and asymmetry are very common in this flare not only in the impulsive phase but also in the decay phase. The difference in the line shifts or asymmetry between Caii 854.2 nm and Hei 1083 nm, as well as the difference between the line center and wings of Caii 854.2 nm imply the existence of a velocity gradient in the line-of-sight direction. (4) Post-flare loops with very deep absorption (70%) and very-high-velocity red shifts (30–90 km s–1) were observed in Hei 1083 nm during the decay phase. However, only a slight dip can be found in the Caii 854.2 nm profile.  相似文献   

20.
Free convection effects on MHD flow past a semi infinite porous flat plate is studied when the time dependent suction velocity changes in step function form. The solution of the problem is obtained in closed form for the fluid with unit Prandtl number. It is observed that for both cooling and heating of the plate the suction velocity enhances the velocity field. The heat transfer is higher with increase in suction velocity.Notations B intensity of magnetic field - G Grashof number - H magnetic field parameter,H=(M+1/4) 1/2–1/2 - M magnetic field parameter - N u Nusselt number - P Prandtl number of the fluid - r suction parameter - T temperature of the fluid - T w temperature of the plate - T temperature of the fluid at infinity - t time - t non-dimensional time - u velocity of the fluid parallel to the plate - u non-dimensional velocity - U velocity of the free stream - suction velocity - 1 suction velocity att0 - 2 suction velocity att>0 - x,y coordinate axes parallel and normal to the plate, respectively - y non-dimensional distance normal to the plate - coefficient of volume expansion - thermal diffusivity - kinematic viscosity - electric conductivity of the fluid - density of the fluid - non-dimensional temperature of the fluid - shear stress at the plate - non dimensional shear stress - erf error function - erfc complementary error function  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号