首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Thermal waters of northern (18°–27°S) and southern (37°–45°S) Chile occur in two very different climatic, geologic and hydrologic environments: arid closed basins with abundant evaporites in the north; humid climate and well drained valleys in the south. The origin and behavior of the main components of the two groups of waters are examined and compared to each other. The modeling of the alteration of volcanic rocks leads to water compositions very different from those observed both in the north and south. In addition to hydrothermal alteration and deep emanations, the Cl/Br ratio reveals a major contribution of saline waters to the two groups: infiltrating brines from salt lakes in the north; seawater in the south.In the north, concentrations of Cl, Br, Na, K, Ca, SO4, Li, B, Si result from the mixing of alteration waters with recycled brines. Hydrothermal alteration is obscured by this massive saline input, except for Mg. δ34S values are consistent with an origin of sulfate from salar brines, which are themselves derived from deep Tertiary gypsum. In the south, two processes account for the composition of thermal waters: mixing of alteration waters with seawater and deep magmatic contribution. The mixing process controls the concentration of Cl, Br, Na, Alk, Si, K, Ca, Mg. Magmatic inputs are detectable for SO4, Li and B. δ34S suggests that sulfate stems from the mixing of alteration waters with either marine SO4 in coastal waters or with deep SO2 in inland waters. In both the north and south, the Mg concentration is drastically lowered (<1 μmol/L) by the probable formation of a chlorite-type mineral. In the south, very small amounts of seawater (<1% in volume) are sufficient to imprint a clear signature on thermal waters. Not only coastal springs are affected by seawater mixing, but also remote inland springs, as far as 150 km from the sea. Subduction of marine sediments in the accretive margin could be the source of the marine imprint in thermal waters of southern Chile. Seawater may be expelled from the subducted lithosphere and incorporated into the mantle source.  相似文献   

2.
《Applied Geochemistry》2006,21(2):253-268
The Dalaman and Köyceğiz thermal springs are from karstic limestones belonging to Upper Cretaceous to Burdigalian Beydağları autochthon and Carboniferous to Lutetian Lycian nappes. They have measured temperatures of 24– 41 °C, specific electrical conductivities of 14,310–45,600 μS/cm, and are dominated by Na (1550–8500 mg/kg) and Cl (2725–15,320 mg/kg). The heat source of the geothermal systems of the area is tectonic related and the occurrence of the thermal springs is related to the young normal faults. Meteoric waters and seawaters recharge the reservoir rocks, are heated at depth with increasing geothermal gradient, and move up to the surface through the fractures and faults by convection trend and emerge as thermal springs. While thermal waters move up to the surface, they mix with different proportions of seawater and cold fresh waters. The seawater contribution to the thermal waters varies from 24% to 78%. Lake waters in the area are connected with thermal waters. Consequently, their chemical composition is influenced by the chemistry of thermal waters. Chemical equilibrium modelling based on measured outlet temperatures and measured pH shows that all the waters are oversaturated with respect to quartz and K-mica and undersaturated with respect to Al(OH)3, anorthite, gypsum, siderite and SiO2(a). Albite, alunite, aragonite, Ca-montmorillonite, calcite, chalcedony, chlorite, dolomite, Fe(OH)3(a), fluorite, gypsum, illite, K-feldspar, kaolinite and sepiolite minerals are mostly oversaturated or undersaturated. Mineral saturation studies of the thermal springs indicate that dolomite, chalcedony and quartz are most likely to cause scaling at outlet conditions. Assessments from various chemical geothermometers, and Na–K–Mg ternary and mineral equilibrium diagrams suggest that the reservoir temperature is around 65–90 °C. The temperatures obtained from quartz, quartz-steam loss, Mg/Li geothermometers and mineral equilibrium diagrams give the most reasonable results.  相似文献   

3.
Three geothermal systems, Montevago, Castellammare-Alcamo and Sciacca, are located along the main seismogenetic structures in Western Sicily. Concentrations of dissolved species including the gases CO2, N2, He and the results of stable isotope measurements δ18O, δD and δ13CTDIC in water samples collected from six thermal springs and 28 cold discharges were used to characterise their feeder aquifers and to reveal the relationships between water chemistry and regional seismicity. The Sciacca thermal springs differ chemically and isotopically from those of Montevago and the Castellammare-Alcamo areas. The inferred deep end-members of the thermal waters of Montevago and Castellammare-Alcamo are almost similar, suggesting that both systems are fed by carbonate waters and selenite waters. A slight contribution (1–3%) of seawater, during groundwater ascent it is also present. The Sciacca thermal springs are fed by a deep reservoir comprising a mixture of 50% carbonate water and 50% seawater. During ascent towards the surface, these waters interact with NaCl-rich evaporite layers. By combination of published and present data significant temporal variations of temperature and some chemical parameters in the thermal waters of Western Sicily have been recorded. These variations were mostly between 1966 and 1969. Although the data are discontinuous it is still possible to reveal a direct link between physico–chemical changes in the Acqua Pia and Terme Selinuntine springs and the 1968 Belice Valley earthquake. Within the studied springs, two kinds of geochemical behaviour have been recognised. The chemistry of the Montevago thermal springs was permanently changed in response to changes in the groundwater system. Water temperature and dissolved SO4, Cl, Na, and TDS showed minimum values before the earthquake and maximum values after the event. Almost constant values substantially higher than before, were recorded after the seismic event. Conversely, the temporal variations observed in the waters of the Terme Selinuntine spring, from 1965 to 1991, exhibit a transient increase most probably caused by a temporary contribution of deep CO2-rich fluids caused by the strain release during the 1968 earthquake.  相似文献   

4.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

5.
Chemical and isotopic data were measured for 51 leached brine springs in the Changdu-Lanping-Simao Basin (CD-LP-SM), China. The predominance of Cl and Na, saturation indices of carbonate minerals, and Na/Cl and Ca/SO4 ratios of ~1 suggest that halite, sulphate, and carbonate are the solute sources. Integration of geochemical, δ18O, and δD values suggests that springs are mainly derived from meteoric water, ice-snow melt, and water-rock interactions. B concentrations range from 0.18 to 11.9 mg/L, with δ11B values of ?4.37‰ to +32.39‰, indicating a terrestrial source. The δ11B-B relationships suggest B sources of crustal origin (marine carbonates with minor crust-derived volcanics); we did not identify a marine or deep mantle origin. The δ11B values of saline springs (+4.61‰ to +32.39‰) exceed those of hot (?4.37‰ to +4.53‰) and cold (?3.47‰ to +14.84‰) springs; this has contributed to strong water-rock interactions and strong saturation of dissolved carbonates. Conversely, the global geothermal δ11B-Cl/B relationship suggests mixing of marine and non-marine sources. The δ11B-Cl/B relationships of the CD-LP-SM are similar to those of the Tibet geothermal belt and the Nangqen Basin, indicating the same B origin. These differ from thermal waters controlled by magmatic fluids and seawater, suggesting that B in CD-LP-SM springs has a crustal origin.  相似文献   

6.
The Kozakli–Nev?ehir geothermal field extends a long a NW–SE direction at SE of the Centrum of Kozakli. The area is not rugged and average elevation is 1,000 m. The Kozanözü Creek flows towards north of the area. In the Kozakli thermal Spa area, thermal waters are manifested along a valley with a length of 1.5 km and 200 m width. In this resort some hot waters are discharged with no use. The thermal water used in the area comes from wells drilled by MTA. In addition, these waters from wells are also utilized by hotels, baths and motels belonging to City Private Management, Municipality and private sector. The measured temperature of Kozakli waters ranges from 43–51°C in springs and 80–96°C in wells. Waters are issued in a wide swampy area as a small group of springs through buried faults. Electrical conductivity values of thermal spring and well waters are 1,650–3,595 μS/cm and pH values are 6.72–7.36. Kozakli cold water has an electrical conductivity value of 450 μS/cm and pH of 7.56. All thermal waters are dominated by Na+ and Cl–SO4 while cold waters are dominated by Ca+2 and HCO3 ?. The aim of this study was to investigate the environmental problems around the Kozakli geothermal field and explain the mechanisms of karstic depression which was formed by uncontrolled use of thermal waters in this area and bring up its possible environmental threats. At the Kozakli geothermal field a sinkhole with 30 m diameter and 15 m depth occurred in January, 17th 2007 at the recreation area located 20 m west of the geothermal well which belongs to the government of Nev?ehir province. The management of the geothermal wells should be controlled by a single official institution in order to avoid the creation of such karstic structures affecting the environment at the source area.  相似文献   

7.
The lithium isotopic composition of waters of the Mono Basin, California   总被引:2,自引:0,他引:2  
Mono Lake, a major closed-basin alkaline salt lake in eastern California, derives its water from a mixture of creeks and springs, with the former providing in excess of 75% of the total. The Li isotopic composition of lake water has not varied significantly over a 4 year meromictic period (δ7Li ∼ +19.5). Springs are isotopically distinct: groundwater springs and seeps carry water enriched in isotopically heavy Li whereas thermal springs supply isotopically light (δ7Li < lake), but 10 times more Li-rich, water. Isotopic fractionation during crystallization of carbonate tufa and evaporitic salt appears to be insignificant, and thus cannot be called on as a principal control of the isotopic balance of Li of the lake. Isotopic differences between the end-member source components permit a water budget to be calculated, suggesting (1) springs provide > 50% of the Li to the lake; (2) the Li budget is sensitively balanced on small thermal spring contributions, < 3% of the total spring inflow; and (3) the residence time of Li in the lake is 28 ka. Other Great Basin closed lakes have variable Li isotopic compositions (δ7Li from +16.7 to +23.7), all of which differ significantly from those of several major lakes and seawater (homogeneously ∼ +32).  相似文献   

8.
Twenty-four brine samples from the Heletz-Kokhav oilfield, Israel, have been analyzed for chemical composition and Li isotope ratios. The chemical composition of the brines, together with geological evidence, suggests derivation from (Messinian) seawater by evaporation that proceeded well into the gypsum stability field but failed to reach the stage of halite crystallization. The present salinity of the samples (18-47 g Cl/L) was achieved by dilution of the original evaporitic brine by local fresh waters. Like brines from other sedimentary basins, the Li/Cl ratios in the Heletz-Kokhav samples show a prominent Li enrichment (five-fold to eight-fold) relative to modern seawater. The isotopic ratios of Li, expressed in the δ 6Li notation, vary from −26.3 to −17.9‰, all values being significantly higher than that of modern seawater (−32‰) irrespective of their corresponding Li concentration (1.0-2.3 mg/L). The isotopic composition of Li and the Li/Cl ratio in the oilfield brines were acquired in two stages: (a) The original evaporated seawater gained isotopically light Li during the diagenetic interaction between the interstitial Messinian brine and the basin sediments. A parent brine with an elevated Li/Cl ratio was formed. The brine was later diluted in the oilfields. (b) The δ 6Li values of the final brines were determined during epigenetic interaction with the Heletz-Kokhav aquifer rocks. At the same time, the Li/Cl ratio inherited from stage (a) remained largely unchanged. This work represents the first use of lithium isotopic composition to elucidate the origin and evolution of formation waters in sedimentary basins.  相似文献   

9.
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

10.
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO4 and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO4 and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caexcess versus Mgdeficit, is proposed to evaluate the dolomitization process.  相似文献   

11.
In this study, the physicochemical parameters (Conductivity, pH, Cl?, HCO 3 ? , PO 4 3? , SO 4 2? , NO 3 ? , NO 2 ? , F?, TH, Ca2+, K+, Mg2+, Na+, and DS) were determined for 41 samples collected from fourteen places in Algeria. The temperature of the thermal water samples at collection sites varied from 26°C to 86°C. pH values varied from 6.5 to 8.5 (i.e., from slightly acidic to moderately alkaline); 90.24% of the samples exhibited relatively high salinity (DS?=?550–5,500 mg L?1). Total hardness measurements indicated these waters to be moderately hard. Forty-six percent of the samples are Na–Cl in character. The ratios Na+/Ca2+, Na+/Mg2+, and (Na+ + K+)/(Ca2+ + Mg2+) were high in 90.24% of the samples. This indicates the ion exchange process is important, which indicates that most of the Algerian thermal waters had developed over a long period at a depth sufficient to react with the rock. Statistical analyses of the physicochemical data gave positive correlation values, thereby enabling good interpretation of the results and revealing the composition of ions present in the thermal waters, as well as some information about their origin. The therapeutic properties associated with thermal waters encourage people at spas to drink the water they bathe in. Therefore, we examined the drinkability of these thermal waters. World Health Organization (WHO 1993) standards were used to evaluate the thermal water quality for drinking. With respect to hardness, the samples were classified as moderately hard (58.54% of the samples), very hard (36.58% of the samples), and soft (4.88% of the samples). The drinkability study shows that only 16 samples of the investigated waters were drinkable and thus could be consumed without special precaution.  相似文献   

12.
《Applied Geochemistry》2004,19(3):445-459
A dataset of major ion composition of 246 samples from cold-water springs discharging from perched-water bodies at volcanic islands (Azores archipelago, Portugal) reveal waters with low mineralization, which evolve due to two main geochemical processes: (1) seawater spraying and (2) dissolution of primary minerals of volcanic rocks. As a result, water facies range from Na–Cl to Na–HCO3 type waters. The relationship between alkali, alkali–earth metals and HCO3 shows differences between waters discharging from perched-water bodies in basaltic rocks comparing to more evolved rocks of trachytic nature. The use of principal component analysis shows that water-rock interaction is limited, which is compatible with the geochemical observations and with the hydrogeological environment.  相似文献   

13.
Caldas de Moledo thermal (27–46 °C) spring and borehole waters issue in the region of the famous Port Wine vineyards, in the Douro River valley (Northern Portugal). The most abundant lithotypes are lower Cambrian metasedimentary rocks, Variscan granitoids and aplite-pegmatitic veins. The thermal waters are characterised by pH ≈ 9.0, TDS ranging from 200 to 350 mg/L, and belong to the HCO3–Na facies indicating that the reservoir rock should be mainly granite. Since the local Spa is strongly dependent on water quality, the effects of mixing between local shallow cold groundwaters and deep thermal waters have been properly investigated. In the SO4 2? (mg/L) versus δ18O (‰ vs. V-SMOW) diagram we can observe that some of the thermal springs show evidences of mixing (higher SO4 2? concentrations) with local meteoric waters infiltrated at lower altitude sites (enriched δ18O signatures), showing the “altitude effect” in the isotopic composition of the recharge waters. Similar trends can be found in the K+, NO3 ?, Ca2+ and Na+ (mg/L) versus δ18O (‰ vs. V-SMOW) diagrams. It should be stated that SO4 2?, K+ and Ca2+ are present in the fertilizers and fungicides used in the vineyards in the northern part of the country. Up to now, the thermal waters from boreholes used in the local Spa do not show evidences of mixing with shallow groundwaters contaminated with agrochemicals. The results obtained so far indicate that in the near future, special attention should be put on the possible occurrence of diffuse agricultural contamination (related to the Port Wine vineyards) in the thermal spring waters.  相似文献   

14.
The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl?, and HCO3 ?) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.  相似文献   

15.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

16.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

17.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

18.
There are 59 springs at the Gevas–Gurp?nar–Güzelsu basins, 38 of these springs emerge from the fractured karst aquifers (recrystallized limestone and travertine) and 21 emerge from the Yuksekova ophiolites, K?rkgeçit formation and alluvium. The groundwater samples collected from 38 out of the total of 59 springs, two streams, one lake and 12 wells were analyzed physico-chemically in the year 2002. EC and TDS values of groundwater increased from the marble (high altitude) to the ophiolites and alluvium (toward Lake Van) as a result of carbonate dissolution and connate seawater. Five chemical types of groundwater are identified: Ca–Mg–HCO3, Mg–Ca–HCO3, Mg–Na–HCO3, Na–Ca–HCO3 and Mg–Ca–Na–HCO3. The calculations and hydrochemical interpretations show that the high concentrations of Ca2+, Mg2+ and HCO3 ? as predominant ions in the waters are mainly attributed to carbonate rocks and high pCO2 in soil. Most of the karst springs are oversaturated in calcite, aragonite and dolomite and undersaturated in gypsum, halite and anhydrite. The water–rock interaction processes that singly or in combination influence the chemical composition of each water type include dissolution of carbonate (calcite and dolomite), calcite precipitation, cation exchange and freshening of connate seawater. These processes contribute considerably to the concentration of major ions in the groundwater. Stable isotope contents of the groundwater suggest mainly direct integrative recharge.  相似文献   

19.
《Applied Geochemistry》2003,18(4):615-627
A study was conducted at the Fresh Kills landfill, Staten Island, New York to investigate the use of B and Li isotopes as tracers of mixing and flow in the groundwater environment. Four end-member waters are present at the Fresh Kills: freshwater, seawater, a geochemically distinct transitional groundwater (that occurs in the zone of mixing between seawater and freshwater) and landfill leachate. The δ11B and δ6Li values of end-member waters are distinct and have isotopic compositions that reflect the solute sources: freshwater δ11B∼+30‰, δ6Li∼−22‰; transition zone groundwaters δ11B∼+20‰, δ6Li∼−27‰; seawater δ11B+40 to +75‰, δ6Li−37 to−44‰; leachate δ11B∼+10‰ (δ6Li not determined). Those wells influenced by seawater exhibited a clear chemical mixing trend, with seawater contributions ranging from 3 to 85%. Well waters with a high percentage of seawater (>30%) had δ11B values that were within 1‰ of the seawater value (+40‰), whereas a trend of increasing δ11B values (+55 to +75‰) was observed for wells with a lower percentage of seawater (<30%). δ6Li values for well waters impacted by mixing with seawater ranged from−37 to−44‰, significantly more negative than pure seawater (−31‰). This deviation from the isotopic composition of seawater, for both δ11B and δ6Li values, represents non-conservative behavior and is likely the result of isotopic fractionation during ion exchange reactions. The wide range of δ11B and δ6Li values and the distinct isotopic compositions of end-member waters makes B and Li isotopes useful for recognizing solute sources, however isotopic fractionation may limit their use as simple tracers of groundwater flow and mixing.  相似文献   

20.
Semnan thermal springs with high TDS and moderate temperature are located northwest of Semnan, the northern part of Iran. The spatial and temporal variations of physicochemical characteristics of the thermal and cold springs were investigated for the recognition of origin and dominant hydrogeochemical processes. Results show that the thermal springs have the same origin, but due to different ascending flow paths and different conductive cooling mechanism, their temperatures vary. The chemical composition of thermal waters is controlled by dolomite, halite and sulfate minerals dissolution and calcite precipitation and bacterial sulfate reduction. The concentration of major and trace elements in the thermal springs does not change in wet and dry seasons notably because they are derived from old groundwater with deep circulation and high temperature. Seasonal change in the concentration of some trace elements is due to the seasonal variation of pH, Eh, temperature and dilution by shallow waters. Decreasing SO4 and carbonate saturation index and increasing Na/Cl ratios and Ca content in the dry season show dilution effect caused by the previous heavy rainfall events. The temperature of the heating reservoir based on K–Mg, chalcedony, quartz and chemical equilibrium approach was approximately estimated in the range of 60–80 °C. Hydrogeologically, a conceptual model was suggested for the thermal springs. The general groundwater flow direction is probably from the dolomite Lar Formation in Chenaran anticline toward the adjacent syncline in a confined condition, and then a thrust fault acts as a conduit and redirects the thermal water to the emerging springs at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号