首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Here we present an overview of some of the most significant observational and theoretical studies of the broad Fe Kα spectral line, which is believed to originate from the innermost regions of relativistic accretion disks around central supermassive black holes of galaxies. The most important results of our investigations in this field are also listed. All these investigations indicate that the broad Fe Kα line is a powerful tool for studying the properties of the supermassive black holes (such as their masses and spins), space–time geometry (metric) in their vicinity, their accretion physics, probing the effects of their strong gravitational fields, and for testing the certain predictions of General Relativity.  相似文献   

2.
A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (<0.1 M) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 M can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar population critically depend on the thermal bloating of the semi-degenerate hydrogen mass losing component, with longer orbital periods for a greater degree of bloating. Provided that the radius of the companion is increased by about a factor of 2 relative to a fully degenerate, zero temperature configuration, an approximate agreement between observed long orbital periods and theoretical modeling of hydrogen rich donors can be achieved. We find no discrepancy between the estimated birth rates for LMXBs and black widow systems, which on average are ${\sim}1.3\times10^{-5}~{\rm yr}^{-1}$ and $1.3\times10^{-7}~{\rm yr}^{-1}$ respectively.  相似文献   

3.
Almost all galaxies have massive central black holes in their centers with masses typically ranging from ~105 to ~109 M. However, the origin and evolution of these objects and their connection with the hosting galaxies are not completely understood yet. In this work we analyze the mass accretion rate of supermassive black holes (SMBH’s) and the mean Eddington ratio (MER) of type 1 AGN using data from the Sloan Sky Survey. For this purpose we improve the method for constructing the subsample of SMBH, taking into account the survey flux limit and the bias of the sample. It was observed that the mean bolometric luminosity of the active black holes can be represented by a function composed by a power law in mass and a like-Schechter function in redshift. Our results also show that both the mean Eddington ratio and the mass accretion rate are proportional to this function.  相似文献   

4.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

5.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

6.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

7.
The problem of few black holes becomes important in multiple mergers of galaxies. If supermassive black holes in centres of galaxies are common, then interaction of three or four supermassive black holes should also be common. The merger of two galaxies with one black hole each produces a semi-stable black hole binary system. Subsequent mergers of galaxies with their own central black holes produces dynamical few-body evolution in which mergers of black holes occur. According to our numerical simulations this evolution typically ends when only one or two black holes remain and, in the latter case, they are ejected in opposite directions from the center of the galaxy. Even when we pick the initial black hole masses at random from a wide distribution, the two black hole ejections happen rather symmetrically. Sometimes the final masses differ considerably in which case only the lighter black hole is ejected. This is caused by the potential barrier of the galaxy itself which prevents the heavy slowly moving black hole flying out of the galaxy. We discuss OJ287 as a possible example of a multiple black hole system.  相似文献   

8.
We incorporate a simple scheme for the growth of supermassive black holes into semi-analytic models that follow the formation and evolution of galaxies in a cold dark matter-dominated Universe. We assume that supermassive black holes are formed and fuelled during major mergers. If two galaxies of comparable mass merge, their central black holes coalesce and a few per cent of the gas in the merger remnant is accreted by the new black hole over a time-scale of a few times 107 yr. With these simple assumptions, our model not only fits many aspects of the observed evolution of galaxies, but also reproduces quantitatively the observed relation between bulge luminosity and black hole mass in nearby galaxies, the strong evolution of the quasar population with redshift, and the relation between the luminosities of nearby quasars and those of their host galaxies. The strong decline in the number density of quasars from z ∼2 to z =0 is a result of the combination of three effects: (i) a decrease in the merging rate; (ii) a decrease in the amount of cold gas available to fuel black holes, and (iii) an increase in the time-scale for gas accretion. The predicted decline in the total content of cold gas in galaxies is consistent with that inferred from observations of damped Ly α systems. Our results strongly suggest that the evolution of supermassive black holes, quasars and starburst galaxies is inextricably linked to the hierarchical build-up of galaxies.  相似文献   

9.
We report the discovery of five Narrow-Line Seyfert 1 galaxies (NLSls) identified from the ROSAT All-Sky Survey bright sources. One of them has a quasar-like luminosity and two, including the quasar-like one, have close companions and/or show interacting features. We calculate the central black hole masses and Eddington ratios for the five NLSls. In combination with the objects of Kaspi et al., we find that NLSls have smaller central black hole masses and higher accretion rate than normal Seyfert 1s.  相似文献   

10.
We report the discovery of five Narrow-Line Seyfert 1 galaxies (NLSls) identified from the ROSAT All-Sky Survey bright sources. One of them has a quasarlike luminosity and two, including the quasar-like one, have close companions and/or show interacting features. We calculate the central black hole masses and Eddington ratios for the five NLSls. In combination with the objects of Kaspi et al., we find that NLSls have smaller central black hole masses and higher accretion rate than normal Seyfert ls.  相似文献   

11.
We compute the effect of an orbiting gas disc in promoting the coalescence of a central supermassive black hole binary. Unlike earlier studies, we consider a finite mass of gas with explicit time dependence: we do not assume that the gas necessarily adopts a steady state or a spatially constant accretion rate, i.e. that the merging black hole was somehow inserted into a pre-existing accretion disc. We consider the tidal torque of the binary on the disc, and the binary's gravitational radiation. We study the effects of star formation in the gas disc in a simple energy feedback framework.
The disc spectrum differs in detail from that found before. In particular, tidal torques from the secondary black hole heat the edges of the gap, creating bright rims around the secondary. These rims do not in practice have uniform brightness either in azimuth or time, but can on average account for as much as 50 per cent of the integrated light from the disc. This may lead to detectable high-photon-energy variability on the relatively long orbital time-scale of the secondary black hole, and thus offer a prospective signature of a coalescing black hole binary.
We also find that the disc can drive the binary to merger on a reasonable time-scale only if its mass is at least comparable with that of the secondary black hole, and if the initial binary separation is relatively small, i.e.   a 0≲ 0.05  pc. Star formation complicates the merger further by removing mass from the disc. In the feedback model we consider, this sets an effective limit to the disc mass. As a result, binary merging is unlikely unless the black hole mass ratio is ≲0.001. Gas discs thus appear not to be an effective solution to the 'last parsec' problem for a significant class of mergers.  相似文献   

12.
A very well-known property of close binary stars is that they usually rotate slowly than a similar type single star. Massive stars in close binary systems are supposed to experience an exchange of mass and angular momentum via mass transfer and tidal interaction, and thus the evolution of binary stars becomes more complex than that of individual stars. In recent times, it has become clear that a large number of massive stars interact with binary companions before they die. The observation also reveals that in close pairs the rotation tends to be synchronized with the orbital motion and the companions are naturally tempted to invoke tidal friction. We here introduce the effect of tidal angular momentum in the model of wind driven non-conservative mass transfer taking mass accretion rate as uniform with respect to time. To model the angular momentum evolution of a low mass main sequence companion star can be a challenging task. So, to make the present study more interesting, we have considered initial masses of the donor and gainer stars at the proximity of bottom-line main sequence stars and they are taken with lower angular momentum. We have produced a graphical profile of the rate of change of tidal angular momentum and the variation of tidal angular momentum with respect to time under the present consideration.  相似文献   

13.
It has long been known that galaxy interactions are associated with enhanced star formation. In a companion paper, we explored this connection by applying a variety of statistics to Sloan Digital Sky Survey (SDSS) data. In particular, we showed that specific star formation rates of galaxies are higher if they have close neighbours. Here, we apply exactly the same techniques to active galactic nuclei (AGN) in the survey, showing that close neighbours are not associated with any similar enhancement of nuclear activity. Star formation is enhanced in AGN with close neighbours in exactly the same way as in inactive galaxies, but the accretion rate on to the black hole, as estimated from the extinction-corrected [O  iii ] luminosity, is not influenced by the presence or absence of companions. Previous work has shown that galaxies with more strongly accreting black holes contain more young stars in their inner regions. This leads us to conclude that star formation induced by a close companion and star formation associated with black hole accretion are distinct events. These events may be part of the same physical process, for example a merger, provided they are separated in time. In this case, accretion on to the black hole and its associated star formation would occur only after the two interacting galaxies have merged. The major caveat in this work is our assumption that the extinction-corrected [O  iii ] luminosity is a robust indicator of the bolometric luminosity of the central black hole. It is thus important to check our results using indicators of AGN activity at other wavelengths.  相似文献   

14.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

15.
We study the bending of jets in binary stellar systems. A compact companion accretes mass from the slow wind of the mass-losing primary star, forms an accretion disc and blows two opposite jets. These fast jets are bent by the slow wind. Disregarding the orbital motion, we find the dependence of the bending angle on the properties of the slow wind and the jets. Bending of jets is observed in planetary nebulae which are thought to be the descendants of interacting binary stars. For example, in some of these planetary nebulae, the two bubbles (lobes) which are inflated by the two opposite jets are displaced to the same side of the symmetry axis of the nebula. Similar displacements are observed in bubble pairs in the centre of some clusters and groups of galaxies. We compare the bending of jets in binary stellar systems with that in clusters of galaxies.  相似文献   

16.
We report the detection of hard X-ray emission components in the spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite. The systems studied, which exhibit strong dynamical evidence for supermassive black holes in their nuclei, are M87, NGC 1399 and NGC 4696 (the dominant galaxies of the Virgo, Fornax and Centaurus clusters, respectively) and NGC 4472, 4636 and 4649 (three further giant ellipticals in the Virgo cluster). The ASCA data for all six sources provide clear evidence for hard emission components, which can be parametrized by power-law models with photon indices in the range Γ=0.6–1.5 (mean value 1.2) and intrinsic 1–10 keV luminosities of 2×1040–2×1042 erg s−1. Our results imply the identification of a new class of accreting X-ray source, with X-ray spectra significantly harder than those of binary X-ray sources, Seyfert nuclei or low-luminosity active galactic nuclei, and bolometric luminosities relatively dominated by their X-ray emission. We discuss various possible origins for the hard X-ray emission and argue that it is most likely to be due to accretion on to the central supermassive black holes, via low radiative efficiency accretion flows coupled with strong outflows. In the case of M87, our detected power-law flux is in good agreement with a previously reported measurement from ROSAT High Resolution Imager observations, which were able to resolve the jet from the nuclear X-ray emission components. We confirm previous results showing that the use of multiphase models in the analysis of the ASCA data leads to determinations of approximately solar emission-weighted metallicities for the X-ray gas in the galaxies. We also present results on the individual element abundances in NGC 4636.  相似文献   

17.
The evolution of high-and low-mass X-ray binaries (HMXB and LMXB) into different types of binary radio pulsars, the ‘high-mass binary pulsars’(HMBP) and ‘low-mass binary pulsars’ (LMBP) is discussed. The HMXB evolve either into Thorne-Zytkow objects or into short-period binaries consisting of a helium star plus a neutron star (or a black hole), resembling Cygnus X-3. The latter systems evolve (with or without a second common-envelope phase) into close binary pulsars, in which the companion of the pulsar may be a massive white dwarf, a neutron star or a black hole ( some final systems may also consist of two black holes). A considerable fraction of the systems may also be disrupted in the second supernova explosion. We discuss the possible reasons why the observed numbers of double neutron stars and of systems like Cyg X-3 are several orders of magnitude lower than theoretically predicted. It is argued that the observed systems form the tip of an iceberg of much larger populations of unobserved systems, some of which may become observable in the future. As to the LMBP, we consider in some detail the origins of systems with orbital periods in the range 1–20 days. We show that to explain their existence, losses of orbital angular momentum (e.g., by magnetic braking) and in a number of cases: also of mass, have to be taken into account. The masses of the low-mass white dwarf companions in these systems can be predicted accurately. We notice a clear correlation between spin period and orbital period for these systems, as well as a clear correlation between pulsar magnetic field strength and orbital period. These relations strongly suggest that increased amounts of mass accreted by the neutron stars lead to increased decay of their magnetic fields: we suggest a simple way to understand the observed value of the ‘bottom’ field strengths of a few times 108 G. Furthermore, we find that the LMBP-systems in which the pulsar has a strong magnetic field (> 1011 G) have an about two orders of magnitude larger birth rate (i.e., about 4 × 10-4 yr-1 in the Galaxy) than the systems with millisecond pulsars (which have B < 109 G). Using the observational fact that neutron stars receive a velocity kick of ∼450 km/s at birth, we find that some 90% of the potential progenitor systems of the strong-field LMBP must have been disrupted in the Supernovae in which their neutron stars were formed. Hence, the formation rate of the progenitors of the strong-field LMBP is of the same order as the galactic supernova rate (4 × 10-3 yr-1). This implies that a large fraction of all Supernovae take place in binaries with a close low-mass (< 2.3 M⊙) companion.  相似文献   

18.
We investigate the hypothesis that the cores of elliptical galaxies and bulges are created from the binding energy liberated by the coalescence of supermassive binary black holes during galaxy mergers. Assuming that the central density profiles of galaxies were initially steep power laws,   ρ ∼ r -2  , we define the 'mass deficit' as the mass in stars that had to be removed from the nucleus in order to produce the observed core. We use non-parametric deprojection to compute the mass deficit in a sample of 35 early-type galaxies with high-resolution imaging data. We find that the mass deficit correlates well with the mass of the nuclear black hole, consistent with the predictions of merger models. We argue that cores in haloes of non-interacting dark matter particles should be comparable in size to those observed in the stars.  相似文献   

19.
We discuss the integrated kinematic parameters of 20 M 51-type binary galaxies. A comparison of the orbital masses of the galaxies with the sum of the individual masses suggests that moderately massive dark halos surround bright spiral galaxies. The relative velocities of the galaxies in binary systems were found to decrease with increasing relative luminosity of the satellite. We obtained evidence that the Tully-Fisher relation for binary members could be flatter than that for local field galaxies. An enhanced star formation rate in the binary members may be responsible for this effect. In most binary systems, the direction of the orbital motion of the satellite coincides with the direction of the rotation of the main galaxy. Seven candidates for distant M 51-type objects were found in the Northern and Southern Hubble Deep Fields. A comparison of this number with the statistics of nearby galaxies provides evidence for the rapid evolution of the space density of M 51-type galaxies with redshift z. We assume that M 51-type binary systems could be formed through the capture of a satellite by a massive spiral galaxy. It is also possible that the main galaxy and its satellite in some of the systems have a common cosmological origin.  相似文献   

20.
We consider the population of black widow pulsars (BWPs). The large majority of these are members of globular clusters. For minimum companion masses  ≲0.1 M  , adiabatic evolution and consequent mass loss under gravitational radiation appear to provide a coherent explanation of all observable properties. We suggest that the group of BWPs with minimum companion masses  ≳0.1 M  are systems relaxing to equilibrium after a relatively recent capture event. We point out that all binary millisecond pulsars (MSPs) with orbital periods   P ≲ 10  h are BWPs (our line of sight allows us to see the eclipses in 10 out of 16 cases). This implies that recycled MSPs emit either in a wide fan beam or a pencil beam close to the spin plane. Simple evolutionary ideas favour a fan beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号